Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2021 | Story Leonie Bolleurs
Famelab
Abdullahi Jamiu, who is working on his master's degree in Microbiology, was adjudicated as the FameLab winner at the Central Regional Heat and will represent the region at the national semi-finals.

Abdullahi Jamiu, who is working on his master's degree in Microbiology in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), was recently announced as the FameLab winner at the Central Regional Heat and will represent the region at the national semi-finals.

Abdullahi, who plans on pursuing a doctoral degree after his master’s, says he wants to establish himself as an academic in microbiology.

Making science simple
He says he decided to participate in the FameLab competition because he is very passionate about communicating science. “Science communication affords me the opportunity to not only take my research outside of the lab space, but also to communicate it to the lay audience. Moreover, science is often perceived by the general public as difficult and unfathomable. As such, science communication programmes promote the simplification and better understanding of scientific knowledge in the community,” he says.

FameLab is coordinated by the South African Agency for Science and Technology Advancement, the British Council, and Jive Media Africa.

According to Abdullahi, the experience was mind-blowing. “It gave me the opportunity to compress my 200-page master's thesis into a three-minute talk in a way I had never thought was possible. Having to present virtually and adjust to the ‘new normal’ was quite challenging,” he adds.

“The overall experience was enlightening and engaging, and at the same time entertaining,” says Abdullahi.

Impressing the judges with his charisma, engagement with the audience, and use of props, Abdullahi’s presentation focused on how the exploration and exploitation of a ‘combination therapy’ approach to drug discovery could help to effectively combat fungal infections, which are the common comorbidities in immune-compromised individuals, including those living with HIV, cancer, and COVID-19.

Revealing an enigma
His fascination with microbiology started at a young age. “How very tiny, microscopic creatures, invisible to the unaided eye, are able to infect and sometimes kill both healthy and immune-compromised individuals, was an enigma to me as a little boy. My desire to unravel this mystery triggered my interest in microbiology, and the more I learn, the more enthusiastic I become to broaden my horizon in this challenging yet exciting field of study,” he says.

Abdullahi would like to one day make a difference by conducting relevant research aimed at contributing to finding lasting solutions to the lingering menace posed by pathogenic microbes. “Moreover, I am very passionate about facilitating the transfer of scientific knowledge to the next generation,” Abdullahi concludes.

News Archive

Well-established root system important for sustainable production in semi-arid grasslands
2015-02-24

Plot layout where production and root studies were done
Photo: Supplied

The importance of a well-established root system for sustainable production in the semi-arid grasslands cannot be over-emphasised.

A study of Prof Hennie Snyman from the Department of Animal and Wildlife and Grassland Sciences at the University of the Free State is of the few studies in which soil-water instead of rainfall has been used to estimate above- and below-ground production of semi-arid grasslands. “In the past, plant ecological studies have concentrated largely on above-ground parts of the grassland ecosystem with less emphasis on root growth. This study is, therefore, one of the few done on root dynamics in drier areas,” said Prof Snyman.

The longevity of grass seeds in the soil seed bank is another aspect that is being investigated at present. This information could provide guidelines in grassland restoration.

“Understanding changes in the hydrological characteristics of grassland ecosystems with degradation is essential when making grassland management decisions in arid and semi-arid areas to ensure sustainable animal production. The impact of grassland degradation on productivity, root production, root/shoot ratios, and water-use efficiency has been quantified for the semi-arid grasslands over the last 35 years. Because of the great impact of sustainable management guidelines on land users, this study will be continuing for many years,” said Prof Snyman.

Water-use efficiency (WUE) is defined as the quantity of above- and/or below-ground plant produced over a given period of time per unit of water evapotranspired. Sampling is done from grassland artificially maintained in three different grassland conditions: good, moderate, and poor.

As much as 86, 89 and 94% of the roots for grasslands in good, moderate and poor conditions respectively occur at a depth of less than 300 mm. Root mass is strongly seasonal with the most active growth taking place during March and April. Root mass appears to be greater than above-ground production for these semi-arid areas, with an increase in roots in relation to above-ground production with grassland degradation. The mean monthly root/shoot ratios for grasslands in good, moderate, and poor conditions are 1.16, 1.11, and 1.37 respectively. Grassland degradation lowered above- and below-ground plant production significantly as well as water-use efficiency. The mean WUE (root production included) was 4.79, 3.54 and 2.47 kg ha -1 mm -1 for grasslands in good, moderate, and poor conditions respectively.

These water-use efficiency observations are among the few that also include root production in their calculations.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept