Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2021 | Story Leonie Bolleurs | Photo Elfrieda Lotter
From the Centre for Microscopy are, from the left: Edward Lee, Prof Koos Terblans, Hanlie Grobler, and Nonkululeko Phili-Mgobhozi.

In its quest to inspire excellence, the University of the Free State (UFS) is in the process of installing state-of-the-art microscopy instruments that will differentiate them as leaders in materials research.

This project to the value of R65 million will not only promote research in, among others, the fields of Chemistry, Physics, Microbiology, Geology, Plant Sciences, Zoology, and Cardiothoracic Surgery, but it will also increase the number of research articles published. 

Prof Koos Terblans, Head of the Department of Physics and Director of the Centre for Microscopy at the UFS, indicates that the university recently purchased a high-resolution transmission electron microscope (HRTEM), a scanning electron microscope (SEM), and a focused ion beam secondary electron microscope. 

“The installation of the equipment that was delivered on 1 March 2021 will take approximately three to six months,” he says. 

Research at another level

The biggest instrument, the HRTEM, allows for direct imaging of the atomic structure of samples. This powerful tool will allow researchers to study the properties of materials on an atomic scale. It will, for instance, be used to study nanoparticles, semiconductors, metals, and biological material.

The instrument will also be used to optimise heat treatment of materials, as it can heat the sample up to 1000 °C while recording live images of the sample. “With this apparatus, the UFS is the only institution in South Africa that can perform this function,” says Prof Terblans. 

He says to install the apparatus, they had to dig a hole of 2 m deep in a special room where the machine was to stand. The machine was then mounted on a solid concrete block (4 m x 3 m x 2 m) in order to minimise vibration. The instrument also acquired a special air conditioner that minimises the movement of air in the room. 

The focused ion-beam secondary electron microscope that was purchased, is used together with the HRTEM, explains Prof Terblans. It is used to cut out samples on a microscopic level to place inside the HRTEM. 

Having access to both the HRTEM and the ion-beam secondary electron microscope places the UFS at another level with its research, says Prof Terblans. 

At the forefront of microscopy 

The third machine acquired, the SEM – which is an electron microscope – allows researchers to produce images of a sample by scanning the surface of the sample with a focused beam of electrons. Prof Terblans says this machine will be used to serve researchers in the biology field with high-resolution SEM photos. 

The UFS Centre for Microscopy can, besides UFS researchers, be accessed by researchers from the Central University of Technology, the national museum, and other research facilities. 

With this injection of state-of-the-art equipment, the UFS is now more than ever at the forefront of research in South Africa. 

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept