Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2021 | Story Leonie Bolleurs | Photo Elfrieda Lotter
From the Centre for Microscopy are, from the left: Edward Lee, Prof Koos Terblans, Hanlie Grobler, and Nonkululeko Phili-Mgobhozi.

In its quest to inspire excellence, the University of the Free State (UFS) is in the process of installing state-of-the-art microscopy instruments that will differentiate them as leaders in materials research.

This project to the value of R65 million will not only promote research in, among others, the fields of Chemistry, Physics, Microbiology, Geology, Plant Sciences, Zoology, and Cardiothoracic Surgery, but it will also increase the number of research articles published. 

Prof Koos Terblans, Head of the Department of Physics and Director of the Centre for Microscopy at the UFS, indicates that the university recently purchased a high-resolution transmission electron microscope (HRTEM), a scanning electron microscope (SEM), and a focused ion beam secondary electron microscope. 

“The installation of the equipment that was delivered on 1 March 2021 will take approximately three to six months,” he says. 

Research at another level

The biggest instrument, the HRTEM, allows for direct imaging of the atomic structure of samples. This powerful tool will allow researchers to study the properties of materials on an atomic scale. It will, for instance, be used to study nanoparticles, semiconductors, metals, and biological material.

The instrument will also be used to optimise heat treatment of materials, as it can heat the sample up to 1000 °C while recording live images of the sample. “With this apparatus, the UFS is the only institution in South Africa that can perform this function,” says Prof Terblans. 

He says to install the apparatus, they had to dig a hole of 2 m deep in a special room where the machine was to stand. The machine was then mounted on a solid concrete block (4 m x 3 m x 2 m) in order to minimise vibration. The instrument also acquired a special air conditioner that minimises the movement of air in the room. 

The focused ion-beam secondary electron microscope that was purchased, is used together with the HRTEM, explains Prof Terblans. It is used to cut out samples on a microscopic level to place inside the HRTEM. 

Having access to both the HRTEM and the ion-beam secondary electron microscope places the UFS at another level with its research, says Prof Terblans. 

At the forefront of microscopy 

The third machine acquired, the SEM – which is an electron microscope – allows researchers to produce images of a sample by scanning the surface of the sample with a focused beam of electrons. Prof Terblans says this machine will be used to serve researchers in the biology field with high-resolution SEM photos. 

The UFS Centre for Microscopy can, besides UFS researchers, be accessed by researchers from the Central University of Technology, the national museum, and other research facilities. 

With this injection of state-of-the-art equipment, the UFS is now more than ever at the forefront of research in South Africa. 

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept