Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2021 | Story Leonie Bolleurs | Photo Elfrieda Lotter
From the Centre for Microscopy are, from the left: Edward Lee, Prof Koos Terblans, Hanlie Grobler, and Nonkululeko Phili-Mgobhozi.

In its quest to inspire excellence, the University of the Free State (UFS) is in the process of installing state-of-the-art microscopy instruments that will differentiate them as leaders in materials research.

This project to the value of R65 million will not only promote research in, among others, the fields of Chemistry, Physics, Microbiology, Geology, Plant Sciences, Zoology, and Cardiothoracic Surgery, but it will also increase the number of research articles published. 

Prof Koos Terblans, Head of the Department of Physics and Director of the Centre for Microscopy at the UFS, indicates that the university recently purchased a high-resolution transmission electron microscope (HRTEM), a scanning electron microscope (SEM), and a focused ion beam secondary electron microscope. 

“The installation of the equipment that was delivered on 1 March 2021 will take approximately three to six months,” he says. 

Research at another level

The biggest instrument, the HRTEM, allows for direct imaging of the atomic structure of samples. This powerful tool will allow researchers to study the properties of materials on an atomic scale. It will, for instance, be used to study nanoparticles, semiconductors, metals, and biological material.

The instrument will also be used to optimise heat treatment of materials, as it can heat the sample up to 1000 °C while recording live images of the sample. “With this apparatus, the UFS is the only institution in South Africa that can perform this function,” says Prof Terblans. 

He says to install the apparatus, they had to dig a hole of 2 m deep in a special room where the machine was to stand. The machine was then mounted on a solid concrete block (4 m x 3 m x 2 m) in order to minimise vibration. The instrument also acquired a special air conditioner that minimises the movement of air in the room. 

The focused ion-beam secondary electron microscope that was purchased, is used together with the HRTEM, explains Prof Terblans. It is used to cut out samples on a microscopic level to place inside the HRTEM. 

Having access to both the HRTEM and the ion-beam secondary electron microscope places the UFS at another level with its research, says Prof Terblans. 

At the forefront of microscopy 

The third machine acquired, the SEM – which is an electron microscope – allows researchers to produce images of a sample by scanning the surface of the sample with a focused beam of electrons. Prof Terblans says this machine will be used to serve researchers in the biology field with high-resolution SEM photos. 

The UFS Centre for Microscopy can, besides UFS researchers, be accessed by researchers from the Central University of Technology, the national museum, and other research facilities. 

With this injection of state-of-the-art equipment, the UFS is now more than ever at the forefront of research in South Africa. 

News Archive

UFS to host one of three world summits on crystallography
2014-04-15

 
Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, with prof Gautam Desiraju, president of the IUCr (front right) and others to commemorate the Nobel prize winner Max von Laue. (Photo's: Milosz Ruszkowski, Grzegorz Dutkiewicz)

Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, to commemorate the Nobel prize winner Max von Laue at a special Laue Symposium organised by prof Mariusz Jaskolski from the A. Mickiewicz University in Poznan.

Max von Laue, who spent his early childhood in Poznan, was the first scientist to diffract X-rays with a crystal.

2014 has been declared by the United Nations as the International Year of Crystallography, and it was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary-General of the UN, Ban Ki-moon. The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg.

As part of the celebrations, Prof Roodt, president of the European Crystallographic Association, one of the three regional affiliates (Americas, Europe and Africa; Asia and Australasia) of the International Union of Crystallography (IUCr), was invited by the president of the IUCr, Prof Gautam Desiraju, to host one of the three world summits, wherein crystallography is to showcase its achievements and strategise for the future.

The summit and conference will take place on the Bloemfontein Campus of the UFS from 12 to 17 October 2014 and is titled: 'Crystallography as vehicle to promote science in Africa and beyond.' It is an ambitious meeting wherein it is anticipated to bring the French-, English- and Arab-speaking nations of Africa together to strategise how science can be expanded, and to offer possibilities for this as nestled in crystallography. Young and established scientists, and politicians associated with science and science management, are the target audience to be brought together in Bloemfontein.

Dr Thomas Auf der Heyde, acting Director General of the South African Department of Science and Technology (DST), has committed some R500 000 for this effort, while the International Union of Crystallography provided R170 000.

“Crystals and crystallography form an integrated part of our daily lives, form bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more. In spite of this, unfortunately, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the twentieth century. Determining the structure of the DNA was one of the most significant scientific events of the 20th century. It has helped understand how genetic messages are being passed on between cells inside our body – everything from the way instructions are sent to proteins to fight infections, to how life is reproduced.

“At the UFS, crystallography finds application in Chemistry, Physics, Biology, Mathematics, Geology, Engineering and the Medical fields. Crystallography is used by the Curiosity Rover, analysing the substances and minerals on Mars!

“The UFS’s Departments of Chemistry and Physics, in particular, have advanced instruments and important research thrusts wherein X-ray crystallography has formed a central part for more than 40 years.

“Crystallography has produced some 28 Nobel prize winners over the past 100 years and continues to provide the means for fundamental and applied research,” said Prof Roodt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept