Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2021 | Story Leonie Bolleurs | Photo Elfrieda Lotter
From the Centre for Microscopy are, from the left: Edward Lee, Prof Koos Terblans, Hanlie Grobler, and Nonkululeko Phili-Mgobhozi.

In its quest to inspire excellence, the University of the Free State (UFS) is in the process of installing state-of-the-art microscopy instruments that will differentiate them as leaders in materials research.

This project to the value of R65 million will not only promote research in, among others, the fields of Chemistry, Physics, Microbiology, Geology, Plant Sciences, Zoology, and Cardiothoracic Surgery, but it will also increase the number of research articles published. 

Prof Koos Terblans, Head of the Department of Physics and Director of the Centre for Microscopy at the UFS, indicates that the university recently purchased a high-resolution transmission electron microscope (HRTEM), a scanning electron microscope (SEM), and a focused ion beam secondary electron microscope. 

“The installation of the equipment that was delivered on 1 March 2021 will take approximately three to six months,” he says. 

Research at another level

The biggest instrument, the HRTEM, allows for direct imaging of the atomic structure of samples. This powerful tool will allow researchers to study the properties of materials on an atomic scale. It will, for instance, be used to study nanoparticles, semiconductors, metals, and biological material.

The instrument will also be used to optimise heat treatment of materials, as it can heat the sample up to 1000 °C while recording live images of the sample. “With this apparatus, the UFS is the only institution in South Africa that can perform this function,” says Prof Terblans. 

He says to install the apparatus, they had to dig a hole of 2 m deep in a special room where the machine was to stand. The machine was then mounted on a solid concrete block (4 m x 3 m x 2 m) in order to minimise vibration. The instrument also acquired a special air conditioner that minimises the movement of air in the room. 

The focused ion-beam secondary electron microscope that was purchased, is used together with the HRTEM, explains Prof Terblans. It is used to cut out samples on a microscopic level to place inside the HRTEM. 

Having access to both the HRTEM and the ion-beam secondary electron microscope places the UFS at another level with its research, says Prof Terblans. 

At the forefront of microscopy 

The third machine acquired, the SEM – which is an electron microscope – allows researchers to produce images of a sample by scanning the surface of the sample with a focused beam of electrons. Prof Terblans says this machine will be used to serve researchers in the biology field with high-resolution SEM photos. 

The UFS Centre for Microscopy can, besides UFS researchers, be accessed by researchers from the Central University of Technology, the national museum, and other research facilities. 

With this injection of state-of-the-art equipment, the UFS is now more than ever at the forefront of research in South Africa. 

News Archive

Producers to save thousands with routine marketing strategies, says UFS researcher
2014-09-01

 

Photo: en.wikipedia.org

Using derivative markets as a marketing strategy can be complicated for farmers. The producers tend to use high risk strategies which include the selling of the crop on the cash market after harvest; whilst the high market risks require innovative strategies including the use of futures and options as traded on the South African Futures Exchange (SAFEX).

Using these innovative strategies are mostly due to a lack of interest and knowledge of the market. The purpose of the research conducted by Dr Dirk Strydom and Manfred Venter from the Department of Agricultural Economics at the University of the Free State (UFS) is to examine whether the adoption of a basic routine strategy is better than adopting no strategy at all.

The research illustrates that by using a Stochastic Efficiency with Respect to a Function (SERF) and Cumulative Distribution Function (CDF) that the use of five basic routine marketing strategies can be more rewarding. These basic strategies are:
• Put (plant time)
• Twelve-segment pricing
• Three-segment pricing
• Put (pollination)(Critical Moment in production/marketing process), and
• Pricing during pollination phase.

These strategies can be adopted by farmers without an in-depth understanding of the market and market-signals. Farmers can save as much as R1.6 million per year on a 2000ha farm with an average yield.

The results obtained from the research illustrate that each strategy is different for each crop. Very important is that the hedging strategies are better than no hedging strategy at all.

This research can also be applicable to the procurement side of the supply chain.

Maize milling firms use complex procurement strategies to procure their raw materials, or sometimes no strategy at all. In this research, basic routine price hedging strategies were analysed as part of the procurement of white maize over a ten-year period ranging from 2002–2012. Part of the pricing strategies used to procure white maize over the period of ten years were a call and min/max strategy. These strategies were compared to the baseline spot market. The data was obtained from the Johannesburg Stock Exchange’s Agricultural Products Division better known as SAFEX.

The results obtained from the research prove that by using basic routine price-hedging strategies to procure white maize, it is more beneficial to do so than by procuring from the spot market (a difference of more than R100 mil).

Thus, it can be concluded that it is not always necessary to use a complex method of sourcing white maize through SAFEX, to be efficient. By implementing a basic routine price hedging strategy year on year it can be better than procuring from the spot market.

Understanding the Maize Maze by Dr Dirk Strydom and Manfred Venter (pdf) - The Dairy Mail


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept