Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 March 2021 | Story University Estates | Photo UFS Photo Archive
The UFS is committed to providing inclusive and accessible living, teaching, and learning spaces that are welcoming to all.

In accordance with its vision to be a university that is recognised across the world for excellence in academic achievement and human reconciliation, the University of the Free State (UFS) is committed to providing a universally accessible environment for all students, staff, and visitors on all three of its campuses. 

A sense of belonging and togetherness

Creating an accessible environment that is conducive and welcoming to everybody on the campuses – which were not designed with accessibility in mind – is not an easy task. When the principles of universal design and access are applied, the environment and spaces can be enjoyed by all users alike, creating a sense of belonging and togetherness. The common perception that accessibility only provides equitable access and opportunities for persons in wheelchairs is refuted by universal access, stating that it is to the advantage and for the use of everybody. Parents with infants in strollers, delivery persons with trolleys or carrying heavy material, library patrons carrying an armful of books, academic staff with wheeled (rolling) laptop bags, and older people all benefit from the availability of a ramp, elevator, or automated door. 

The current accessibility project of the UFS was initiated in 2009, evaluating the accessibility status of the UFS at the time. Priority inaccessible areas and spaces were identified and listed to be converted and improved over a period of five years, revising the list every year. The focus of the project was primarily on areas and spaces where most student activities take place, where specific needs and challenges have been identified, and where specific departments/divisions of the UFS have requested the improvement of access. The project does not only include access to buildings, but also accessible bathrooms, sufficient accessible parking spaces, accessible walkways, and accessibility within the classroom. The emphasis of the project is not only on wheelchair users and persons with mobility impairments, but also on creating an environment that can easily be navigated and used by everybody. 

All new infrastructure incorporates accessibility measures

University Estates updated the accessibility reports mid-2020 and identified project priorities up to 2024. Among other things, the key focus areas were to make all walkways wheelchair-friendly, to create ablution facilities for persons with disabilities, to install lifts in buildings, and to install ramps. All new infrastructure by default incorporates accessibility measures in the planning stage.

On the South Campus, ramps were installed around the campus and pathways were made wheelchair-friendly. Entrances to existing lecture halls and other buildings have also been made more user-friendly for persons with disabilities. Additional to the above-mentioned initiatives, the institution has also embarked on a project that seeks to assist the visually impaired to better navigate the campus.

For our Qwaqwa Campus, immediate critical interventions that are in the planning stage and that should be done within the next year, are the creation of accessible ablution facilities in the Administration Building, library, and the Humanities and Education buildings.

WATCH video below: 


News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept