Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 March 2021 | Story University Estates | Photo UFS Photo Archive
The UFS is committed to providing inclusive and accessible living, teaching, and learning spaces that are welcoming to all.

In accordance with its vision to be a university that is recognised across the world for excellence in academic achievement and human reconciliation, the University of the Free State (UFS) is committed to providing a universally accessible environment for all students, staff, and visitors on all three of its campuses. 

A sense of belonging and togetherness

Creating an accessible environment that is conducive and welcoming to everybody on the campuses – which were not designed with accessibility in mind – is not an easy task. When the principles of universal design and access are applied, the environment and spaces can be enjoyed by all users alike, creating a sense of belonging and togetherness. The common perception that accessibility only provides equitable access and opportunities for persons in wheelchairs is refuted by universal access, stating that it is to the advantage and for the use of everybody. Parents with infants in strollers, delivery persons with trolleys or carrying heavy material, library patrons carrying an armful of books, academic staff with wheeled (rolling) laptop bags, and older people all benefit from the availability of a ramp, elevator, or automated door. 

The current accessibility project of the UFS was initiated in 2009, evaluating the accessibility status of the UFS at the time. Priority inaccessible areas and spaces were identified and listed to be converted and improved over a period of five years, revising the list every year. The focus of the project was primarily on areas and spaces where most student activities take place, where specific needs and challenges have been identified, and where specific departments/divisions of the UFS have requested the improvement of access. The project does not only include access to buildings, but also accessible bathrooms, sufficient accessible parking spaces, accessible walkways, and accessibility within the classroom. The emphasis of the project is not only on wheelchair users and persons with mobility impairments, but also on creating an environment that can easily be navigated and used by everybody. 

All new infrastructure incorporates accessibility measures

University Estates updated the accessibility reports mid-2020 and identified project priorities up to 2024. Among other things, the key focus areas were to make all walkways wheelchair-friendly, to create ablution facilities for persons with disabilities, to install lifts in buildings, and to install ramps. All new infrastructure by default incorporates accessibility measures in the planning stage.

On the South Campus, ramps were installed around the campus and pathways were made wheelchair-friendly. Entrances to existing lecture halls and other buildings have also been made more user-friendly for persons with disabilities. Additional to the above-mentioned initiatives, the institution has also embarked on a project that seeks to assist the visually impaired to better navigate the campus.

For our Qwaqwa Campus, immediate critical interventions that are in the planning stage and that should be done within the next year, are the creation of accessible ablution facilities in the Administration Building, library, and the Humanities and Education buildings.

WATCH video below: 


News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept