Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 March 2021 | Story University Estates | Photo UFS Photo Archive
The UFS is committed to providing inclusive and accessible living, teaching, and learning spaces that are welcoming to all.

In accordance with its vision to be a university that is recognised across the world for excellence in academic achievement and human reconciliation, the University of the Free State (UFS) is committed to providing a universally accessible environment for all students, staff, and visitors on all three of its campuses. 

A sense of belonging and togetherness

Creating an accessible environment that is conducive and welcoming to everybody on the campuses – which were not designed with accessibility in mind – is not an easy task. When the principles of universal design and access are applied, the environment and spaces can be enjoyed by all users alike, creating a sense of belonging and togetherness. The common perception that accessibility only provides equitable access and opportunities for persons in wheelchairs is refuted by universal access, stating that it is to the advantage and for the use of everybody. Parents with infants in strollers, delivery persons with trolleys or carrying heavy material, library patrons carrying an armful of books, academic staff with wheeled (rolling) laptop bags, and older people all benefit from the availability of a ramp, elevator, or automated door. 

The current accessibility project of the UFS was initiated in 2009, evaluating the accessibility status of the UFS at the time. Priority inaccessible areas and spaces were identified and listed to be converted and improved over a period of five years, revising the list every year. The focus of the project was primarily on areas and spaces where most student activities take place, where specific needs and challenges have been identified, and where specific departments/divisions of the UFS have requested the improvement of access. The project does not only include access to buildings, but also accessible bathrooms, sufficient accessible parking spaces, accessible walkways, and accessibility within the classroom. The emphasis of the project is not only on wheelchair users and persons with mobility impairments, but also on creating an environment that can easily be navigated and used by everybody. 

All new infrastructure incorporates accessibility measures

University Estates updated the accessibility reports mid-2020 and identified project priorities up to 2024. Among other things, the key focus areas were to make all walkways wheelchair-friendly, to create ablution facilities for persons with disabilities, to install lifts in buildings, and to install ramps. All new infrastructure by default incorporates accessibility measures in the planning stage.

On the South Campus, ramps were installed around the campus and pathways were made wheelchair-friendly. Entrances to existing lecture halls and other buildings have also been made more user-friendly for persons with disabilities. Additional to the above-mentioned initiatives, the institution has also embarked on a project that seeks to assist the visually impaired to better navigate the campus.

For our Qwaqwa Campus, immediate critical interventions that are in the planning stage and that should be done within the next year, are the creation of accessible ablution facilities in the Administration Building, library, and the Humanities and Education buildings.

WATCH video below: 


News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept