Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 March 2021 | Story University Estates | Photo UFS Photo Archive
The UFS is committed to providing inclusive and accessible living, teaching, and learning spaces that are welcoming to all.

In accordance with its vision to be a university that is recognised across the world for excellence in academic achievement and human reconciliation, the University of the Free State (UFS) is committed to providing a universally accessible environment for all students, staff, and visitors on all three of its campuses. 

A sense of belonging and togetherness

Creating an accessible environment that is conducive and welcoming to everybody on the campuses – which were not designed with accessibility in mind – is not an easy task. When the principles of universal design and access are applied, the environment and spaces can be enjoyed by all users alike, creating a sense of belonging and togetherness. The common perception that accessibility only provides equitable access and opportunities for persons in wheelchairs is refuted by universal access, stating that it is to the advantage and for the use of everybody. Parents with infants in strollers, delivery persons with trolleys or carrying heavy material, library patrons carrying an armful of books, academic staff with wheeled (rolling) laptop bags, and older people all benefit from the availability of a ramp, elevator, or automated door. 

The current accessibility project of the UFS was initiated in 2009, evaluating the accessibility status of the UFS at the time. Priority inaccessible areas and spaces were identified and listed to be converted and improved over a period of five years, revising the list every year. The focus of the project was primarily on areas and spaces where most student activities take place, where specific needs and challenges have been identified, and where specific departments/divisions of the UFS have requested the improvement of access. The project does not only include access to buildings, but also accessible bathrooms, sufficient accessible parking spaces, accessible walkways, and accessibility within the classroom. The emphasis of the project is not only on wheelchair users and persons with mobility impairments, but also on creating an environment that can easily be navigated and used by everybody. 

All new infrastructure incorporates accessibility measures

University Estates updated the accessibility reports mid-2020 and identified project priorities up to 2024. Among other things, the key focus areas were to make all walkways wheelchair-friendly, to create ablution facilities for persons with disabilities, to install lifts in buildings, and to install ramps. All new infrastructure by default incorporates accessibility measures in the planning stage.

On the South Campus, ramps were installed around the campus and pathways were made wheelchair-friendly. Entrances to existing lecture halls and other buildings have also been made more user-friendly for persons with disabilities. Additional to the above-mentioned initiatives, the institution has also embarked on a project that seeks to assist the visually impaired to better navigate the campus.

For our Qwaqwa Campus, immediate critical interventions that are in the planning stage and that should be done within the next year, are the creation of accessible ablution facilities in the Administration Building, library, and the Humanities and Education buildings.

WATCH video below: 


News Archive

Chemistry research group receives international recognition
2016-10-28

Description: Chemistry research group  Tags: Chemistry research group

Dr Carla Pretorius mounts microcrystals with
Dumisani Kama while Pennie Mokolokolo
observe the technique.
Photo: Supplied


Crystals and crystallography form an integrated part of our daily lives, from bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, analysing rocks on the moon and Mars, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more.

In spite of this, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the 20th century, spanning the sciences. That is why this discipline is actively researched by a number of tertiary institutions around the globe as well as the Inorganic Chemistry Group of the Department of Chemistry at the University of the Free State (UFS).

Research by the Inorganic Chemistry Group includes:
•    clever design of model medicines to better detect cancer and study heart, bone and brain defects;
•    production of new compounds for making new and better automobile fuels and decrease carbon dioxide in the atmosphere;
•    generation and purification of new South African mineral resources for metals widely used in turbines which use wind energy.

A group of UFS students have received acknowledgement for their research at six international venues in the past few months.

Posters in Cameroon
Twelve postgraduate students, together with Prof André Roodt, Head of the Inorganic Chemistry division at the UFS, delivered three oral presentations, nine posters, one plenary and one keynote lecture abroad.

Four UFS students - Nina Morogoa, Pheello Nkoe, Alebel Bilay, and Mohammed Elmakki - who delivered posters at the First Pan African Conference on Crystallography in Dschang, Cameroon, received prizes for their presentations.

School and conference in Croatia

Students Orbett Alexander and Dumisani Kama were selected to attend the intense and demanding Third European Crystallographic School in Bôl, Croatia. Both Kama, Alexander and Prof Roodt gave oral presentations at the 24th Croatian-Slovenian Crystallographic Meeting at Brac Island, Croatia.

Kama, together with Dr Ferdi Groenewald, Dr Carla Pretorius and Pennie Mokolokolo, also attended the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The ESRF is a centre of excellence for fundamental and innovation-driven research. The storage ring at this laser facility can generate X-rays 100 billion times brighter than typical medical and laboratory X-ray sources.

Research in Switzerland

Kama and Mokolokolo also spent one month on research visits at the University of Zurich in Switzerland. Both Kama and Alexander were invited to present their research orally to the Institute of Inorganic Chemistry in Zurich, headed by Prof Roger Alberto.

In Basel, Switzerland, Dr Ferdi Groenewald, Dr Renier Koen, and Dr Truidie Venter all presented their research at the 30th European Crystallographic Meeting.

Prof Roodt said: “It is incredibly important that our postgraduate students get the chance to interact, discuss, and be taught by the best in the world and realise that hard work on basic and applied chemistry processes leads to broader recognition. The delegates to these international venues came from more than 60 countries and took note of our students work. With these young researchers, our future at the UFS and at Inorganic Chemistry is in good hands”.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept