Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 May 2021 | Story Xolisa Mnukwa | Photo Johan Roux
The Kovsie ACT programme encourages the evolution of UFS students to form internationally competitive graduates who embody sustainable energy knowledge and skills to contribute to the development of the global environment.

Be a part of the evolution and livestream this year’s University of the Free State (UFS) Kovsie ACT Eco-vehicle race on 15 May 2021.

What’s in it for you? Get exposed to an informative but exciting event that will assess the technology and logic behind sustainable energy sources and how this will influence the future global society.

According to Karen Scheepers, Head of the University of the Free State (UFS) Kovsie Act office, the quest for sustainable resources remains one of the top-five challenges facing the global population of today. This challenge – together with issues pertaining to food insecurity, water, waste and toxins, and the widening gap between rich and poor – poses new questions to the kind of graduates that universities produce, she added.  She further highlighted the importance of innovative critical thinking that responds to day-to-day issues experienced by society in a global context.

Therefore, the UFS has initiated an eco-vehicle project to help students develop the necessary graduate attributes to specifically address issues of sustainable resources. The aim of the eco-vehicle project is to implement, within the context of a higher education institution, a new innovative skills development solution to the challenge of sustainable resources, and to evaluate the efficacy and impact of this programme in a rigorous way. 

Through this programme, senior undergraduate students worked together in teams through a mediated learning programme to build scale-model electric vehicles and mini solar charging stations – powered by solar energy (or batteries charged through solar energy).  This experience will steer them towards finding solutions and creating awareness around 21st century issues, and adapting to the development of technology and globalisation, essentially producing an interdisciplinary experience for UFS students.

Kovsie ACT eco-vehicle skills programme

According to the Kovsie ACT team, the eco-vehicle skills programme helps students understand how their decisions and actions affect the environment, and further implores them to build on their knowledge and skills in order to address and combat complex environmental issues, while taking sufficient action to maintain its healthy state and secure it for the future. 

The skills development programme culminates in a race-day event where sustainable energy skills are put to the test. 
A certificate endorsed by the UFS and donor partner merSETA will be issued to students who have participated and who have been successfully trained and developed in the eco-vehicle skills programme, giving them a head start to the working world.

For more information about the Kovsie ACT eco-vehicle skills programme, email ACT at ACT@ufs.ac.za 

 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept