Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 May 2021 | Story Xolisa Mnukwa | Photo Johan Roux
The Kovsie ACT programme encourages the evolution of UFS students to form internationally competitive graduates who embody sustainable energy knowledge and skills to contribute to the development of the global environment.

Be a part of the evolution and livestream this year’s University of the Free State (UFS) Kovsie ACT Eco-vehicle race on 15 May 2021.

What’s in it for you? Get exposed to an informative but exciting event that will assess the technology and logic behind sustainable energy sources and how this will influence the future global society.

According to Karen Scheepers, Head of the University of the Free State (UFS) Kovsie Act office, the quest for sustainable resources remains one of the top-five challenges facing the global population of today. This challenge – together with issues pertaining to food insecurity, water, waste and toxins, and the widening gap between rich and poor – poses new questions to the kind of graduates that universities produce, she added.  She further highlighted the importance of innovative critical thinking that responds to day-to-day issues experienced by society in a global context.

Therefore, the UFS has initiated an eco-vehicle project to help students develop the necessary graduate attributes to specifically address issues of sustainable resources. The aim of the eco-vehicle project is to implement, within the context of a higher education institution, a new innovative skills development solution to the challenge of sustainable resources, and to evaluate the efficacy and impact of this programme in a rigorous way. 

Through this programme, senior undergraduate students worked together in teams through a mediated learning programme to build scale-model electric vehicles and mini solar charging stations – powered by solar energy (or batteries charged through solar energy).  This experience will steer them towards finding solutions and creating awareness around 21st century issues, and adapting to the development of technology and globalisation, essentially producing an interdisciplinary experience for UFS students.

Kovsie ACT eco-vehicle skills programme

According to the Kovsie ACT team, the eco-vehicle skills programme helps students understand how their decisions and actions affect the environment, and further implores them to build on their knowledge and skills in order to address and combat complex environmental issues, while taking sufficient action to maintain its healthy state and secure it for the future. 

The skills development programme culminates in a race-day event where sustainable energy skills are put to the test. 
A certificate endorsed by the UFS and donor partner merSETA will be issued to students who have participated and who have been successfully trained and developed in the eco-vehicle skills programme, giving them a head start to the working world.

For more information about the Kovsie ACT eco-vehicle skills programme, email ACT at ACT@ufs.ac.za 

 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept