Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 May 2021 | Story Xolisa Mnukwa
The 2021 Kovsie ACT Eco-vehicle race puts students’ sustainable energy and critical thinking skills to the test.

The University of the Free State (UFS) Division of Student Affairs’ (DSA) Director of Student Life, Dr WP Wahl, believes the knowledge and skills that students have gained through participating in the 2021 Eco-vehicle project will position them more optimally in the future world of work. “We are also tremendously grateful for the project funding received from merSETA; without their support, none of this would have been possible,” he remarked.

The Kovsie ACT Eco-vehicle race, in conjunction with the overall programme, was established to encourage students to learn more about the technology and logic behind sustainable energy sources and how this can influence the future global society.

This year’s events witnessed students competing according to their UFS residence teams, with Sonnedou, Legatum, Kestell (SonLeTell); Soetdoring, Beyers Naude, Arista (Soetbeyrista); and Roosmaryn, Kagiso, Karee (Kar-is-myn) ending in first, second, and third place respectively, obtaining the highest scores for the races they competed in.

Anton Calitz, Electrical Engineer in University Estates who was the announcer on the day, described the event as one that exceeded his wildest expectations. “From a sustainable energy point of view, the eco-vehicle race results really turned the tables, with lower energy usage per lap being successfully recorded – as anticipated,” he further added.

Andre van Wyk, Client Liaison Officer of merSETA (Manufacturing, Engineering and Related Services Seta) for the Free State and Northern Cape – as one of the sponsors of the innovative programme – extended warm congratulations to the UFS for hosting an outstanding event. He further applauded the university for its resourcefulness in virtually adding electronic media broadcasts to extend the event to the entire UFS community.

“The Kovsie ACT Eco-vehicle programme was eye-opening and exposed me to the broad field of electronics. It definitely came as a challenge – one I had not anticipated on that level, because at times I couldn’t even see what all the building was leading to, but I just had to put my mind and hands to work – it pushed me to think critically and creatively. I was honoured to have been part of this entire experience and I’m grateful to Anton and his team, as well as the Kovsie ACT office, for being a constant support structure throughout the process, as it was not easy.” 

These were the humble words of Sinegugu Sibisi, a University of the Free State (UFS) student who was part of the 2021 Kovsie ACT Eco-vehicle race, where sustainable energy was at the order of the day.

For more information about the Kovsie ACT eco-vehicle skills programme, email ACT at ACT@ufs.ac.za
 

 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept