Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 May 2021 | Story Xolisa Mnukwa
The 2021 Kovsie ACT Eco-vehicle race puts students’ sustainable energy and critical thinking skills to the test.

The University of the Free State (UFS) Division of Student Affairs’ (DSA) Director of Student Life, Dr WP Wahl, believes the knowledge and skills that students have gained through participating in the 2021 Eco-vehicle project will position them more optimally in the future world of work. “We are also tremendously grateful for the project funding received from merSETA; without their support, none of this would have been possible,” he remarked.

The Kovsie ACT Eco-vehicle race, in conjunction with the overall programme, was established to encourage students to learn more about the technology and logic behind sustainable energy sources and how this can influence the future global society.

This year’s events witnessed students competing according to their UFS residence teams, with Sonnedou, Legatum, Kestell (SonLeTell); Soetdoring, Beyers Naude, Arista (Soetbeyrista); and Roosmaryn, Kagiso, Karee (Kar-is-myn) ending in first, second, and third place respectively, obtaining the highest scores for the races they competed in.

Anton Calitz, Electrical Engineer in University Estates who was the announcer on the day, described the event as one that exceeded his wildest expectations. “From a sustainable energy point of view, the eco-vehicle race results really turned the tables, with lower energy usage per lap being successfully recorded – as anticipated,” he further added.

Andre van Wyk, Client Liaison Officer of merSETA (Manufacturing, Engineering and Related Services Seta) for the Free State and Northern Cape – as one of the sponsors of the innovative programme – extended warm congratulations to the UFS for hosting an outstanding event. He further applauded the university for its resourcefulness in virtually adding electronic media broadcasts to extend the event to the entire UFS community.

“The Kovsie ACT Eco-vehicle programme was eye-opening and exposed me to the broad field of electronics. It definitely came as a challenge – one I had not anticipated on that level, because at times I couldn’t even see what all the building was leading to, but I just had to put my mind and hands to work – it pushed me to think critically and creatively. I was honoured to have been part of this entire experience and I’m grateful to Anton and his team, as well as the Kovsie ACT office, for being a constant support structure throughout the process, as it was not easy.” 

These were the humble words of Sinegugu Sibisi, a University of the Free State (UFS) student who was part of the 2021 Kovsie ACT Eco-vehicle race, where sustainable energy was at the order of the day.

For more information about the Kovsie ACT eco-vehicle skills programme, email ACT at ACT@ufs.ac.za
 

 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept