Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 May 2021 | Story Xolisa Mnukwa
Once again, a Kovsie takes the crown for this year’s 2021 Miss Free State beauty pageant.

Rofhiwa Fatima Galatia is a 21-year-old BCom Accounting student at the University of the Free State (UFS), and the newly crowned Miss Free State 2021.
Rofhiwa is also a UFS athlete and co-founder of Immeasurable Women – a nongovernmental organisation (NGO) that is all about women and community upliftment. 

She entered the Miss Free State competition in order to align herself with the pageant’s brands, which aims to empower and support the ideals of an intellectual woman who embodies leadership and wants to foster development in communities. 
“I believe that generational poverty is caused by a lack of a support system,” Rofhiwa remarked.

“My next step is to use this platform to uphold the South African patronage system of the Miss Free State competition. I want to encourage talent and fight food insecurity within our community, and further empower women and the community as a whole by breaking the stigma of limitations and poverty, through soliciting support and participation from business,” stated Rofhiwa.  

She further explained that she believes it is her responsibility to show people that they are immeasurable and that they can be ordinary people with extraordinary dreams. 

News Archive

Prof Tredoux turns theories regarding the formation of metals on its head
2013-09-17

 

Prof Marian Tredoux
17 September 2013

The latest research conducted by Prof Marian Tredoux of the Department of Geology, in collaboration with her research assistant Bianca Kennedy and their colleagues in Germany, placed established theories regarding how minerals of the platinum-group of elements are formed, under close scrutiny.

The article on this research of which Prof Tredoux is a co-author – ‘Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts’ – was published in Nature Communications on 6 September 2013. It is an online journal for research of the highest quality in the fields of biological, physical and chemical sciences.

This study found that atoms of platinum and arsenic create nanoclusters, long before the mineral sperrylite can crystallise. Thus, the platinum does not occur as a primary sulphur compound. The research was conducted at the Steinmann Institute of the University of Bonn, Germany, as well as here in Bloemfontein.

Monetary support from Inkaba yeAfrica – a German-South African multidisciplinary and intercultural Earth Science collaborative of the National Research Foundation (NRF) – made this research possible. Studies are now also being conducted on other metals in the precious metal group, specifically palladium, rhodium and ruthenium.

The discovery of the nanoclusters and the combination with arsenic can have far-reaching consequences for the platinum mine industry, if it can be utilised to recover a greater amount of platinum ore and therefore less wastage ending up in mine dumps. This will signify optimal mining of a scarce and valuable metal, one of South Africa’s most important export products.

For Prof Tredoux, the research results also prove thoughts she already had some twenty years ago around the forming of platinum minerals. “Researchers laughed in my face, but the evidence had to wait for the development of technology to prove it.” Young researchers were very excited at recent congresses about the findings, since the new models can bring new insights.

“Chemistry researchers have been talking about platinum element clusters in watery environments for quite a while, but it was thought that these would not appear in magmas (molten rock) due to the high temperatures (>1 000 degrees celsius).”

Prof Tredoux has already delivered lectures at congresses in Scotland, Hungary, Sweden and Italy on this research.

Read the article at: http://www.nature.com/ncomms/2013/130906/ncomms3405/full/ncomms3405.html

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept