Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 May 2021 | Story Leonie Bolleurs | Photo Sonia Small
Prof Robert Bragg recently participated in a live panel discussion with leaders from the food and beverage sector, debating the challenges facing the industry and sharing their lessons and solutions.

Prof Robert Bragg from the Department of Microbiology and Biochemistry at the University of the Free State formed part of a live panel discussion with leaders from the food and beverage sector, debating the challenges facing the industry and sharing their lessons and solutions.

The discussion, part of a week-long virtual event (19-23 April), was attended by more than 1 300 attendees representing 500 food manufacturers, retailers, ingredient companies, and laboratories from 83 countries.

The magazine, New Food, coordinated the initiative that focused on food integrity. Speaking with Prof Bragg at the session that centred around animal welfare, zoonotic disease, and antibiotics, were Catherine McLaughlin, Chair, Responsible Use of Medicines in Agriculture (RUMA); Vicky Bond, UK Managing Director, The Humane League; and Daniela Battaglia, Livestock Development Officer, Food and Agriculture Organization of the United Nations (FAO).

The rise of antibiotic resistance

James Russell, President of the British Veterinary Association (BVA), was the moderator of the discussion that also touched on the issues surrounding animal welfare; how animal welfare can impact meat quality; avoiding future zoonotic disease; the rise of antibiotic resistance; ethical considerations to be mindful of; and the use of pesticides and safety considerations.

Prof Bragg specifically talked about antibiotic resistance. “Mankind has major problems with antibiotics,” he said. 

He asked if animal agriculture can be sustained without the use of antibiotics and stated that it was necessary to look at alternatives. Possible solutions he suggested include improved vaccines, bacteriophages, and phage enzymes. He, however, believes that biosecurity will be the most effective alternative. 

Living in a post-antibiotic area

Disinfectants are one of the biosecurity measures taken to minimise the risk of infectious diseases. “But it is important to be aware of the fact that as resistance to antibiotics increases the resistance to disinfectants also increases,” said Prof Bragg. 

He continued: “An increase in the use of disinfectants increases the resistance to disinfectants. This is also evident in humans, especially now during the COVID-19 pandemic. Much of these disinfectants are also of poor quality,” he said. 

According to Prof Bragg, we are living in a post-antibiotic era. “Although food standards are higher in developed countries such as in Europe – where people can pay more for poultry that were fed diets with reduced antibiotics, it is important to keep in mind that people cannot pay the same for poultry in developing countries. These countries often import poultry from countries where the food standards are not that high and where birds were treated to diets containing more antibiotics. A large supplier of poultry in Africa is small-scale farmers, who also feed their birds food containing higher levels of antibiotics.” 

“We need to look at the antibiotic problem as a global problem; a concern that will be with us for a while,” said Prof Bragg.

One solution provided by the group was for mankind to reduce its meat intake and moving to a more plant-based diet. This will have a significant effect on animal welfare as well as reducing the demand for antibiotics.

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept