Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 May 2021 | Story Leonie Bolleurs | Photo Sonia Small
Prof Robert Bragg recently participated in a live panel discussion with leaders from the food and beverage sector, debating the challenges facing the industry and sharing their lessons and solutions.

Prof Robert Bragg from the Department of Microbiology and Biochemistry at the University of the Free State formed part of a live panel discussion with leaders from the food and beverage sector, debating the challenges facing the industry and sharing their lessons and solutions.

The discussion, part of a week-long virtual event (19-23 April), was attended by more than 1 300 attendees representing 500 food manufacturers, retailers, ingredient companies, and laboratories from 83 countries.

The magazine, New Food, coordinated the initiative that focused on food integrity. Speaking with Prof Bragg at the session that centred around animal welfare, zoonotic disease, and antibiotics, were Catherine McLaughlin, Chair, Responsible Use of Medicines in Agriculture (RUMA); Vicky Bond, UK Managing Director, The Humane League; and Daniela Battaglia, Livestock Development Officer, Food and Agriculture Organization of the United Nations (FAO).

The rise of antibiotic resistance

James Russell, President of the British Veterinary Association (BVA), was the moderator of the discussion that also touched on the issues surrounding animal welfare; how animal welfare can impact meat quality; avoiding future zoonotic disease; the rise of antibiotic resistance; ethical considerations to be mindful of; and the use of pesticides and safety considerations.

Prof Bragg specifically talked about antibiotic resistance. “Mankind has major problems with antibiotics,” he said. 

He asked if animal agriculture can be sustained without the use of antibiotics and stated that it was necessary to look at alternatives. Possible solutions he suggested include improved vaccines, bacteriophages, and phage enzymes. He, however, believes that biosecurity will be the most effective alternative. 

Living in a post-antibiotic area

Disinfectants are one of the biosecurity measures taken to minimise the risk of infectious diseases. “But it is important to be aware of the fact that as resistance to antibiotics increases the resistance to disinfectants also increases,” said Prof Bragg. 

He continued: “An increase in the use of disinfectants increases the resistance to disinfectants. This is also evident in humans, especially now during the COVID-19 pandemic. Much of these disinfectants are also of poor quality,” he said. 

According to Prof Bragg, we are living in a post-antibiotic era. “Although food standards are higher in developed countries such as in Europe – where people can pay more for poultry that were fed diets with reduced antibiotics, it is important to keep in mind that people cannot pay the same for poultry in developing countries. These countries often import poultry from countries where the food standards are not that high and where birds were treated to diets containing more antibiotics. A large supplier of poultry in Africa is small-scale farmers, who also feed their birds food containing higher levels of antibiotics.” 

“We need to look at the antibiotic problem as a global problem; a concern that will be with us for a while,” said Prof Bragg.

One solution provided by the group was for mankind to reduce its meat intake and moving to a more plant-based diet. This will have a significant effect on animal welfare as well as reducing the demand for antibiotics.

News Archive

Death may come in adorable little packages
2015-03-23

The main host of the Lassa virus is the Natal Mulimammate mouse.

Photo: Supplied

Postdoctoral researcher, Abdon Atangana, of the Institute for Groundwater Studies at the university recently published an article online about the Lassa Haemorrhagic fever in the Natural Computing Applications Forum. In addition to the terminal transmissible sickness recognised as Ebola haemorrhagic fever, there is another strain called Lassa haemorrhagic fever.

The disease is classified under the arenaviridae virus family. The first outbreaks of the disease were observed in Nigeria, Liberia, Sierra Leone, and the Central African Republic. However, it was first described in 1969 in the town of Lassa, in Borno State, Nigeria.

The main host of the Lassa virus is the Natal Mulimammate mouse, an animal indigenous to most of Sub-Saharan Africa. The contamination in humans characteristically takes place through exposure to animal excrement through the respiratory or gastrointestinal tracts.

Mouthfuls of air containing tiny particle of infective material are understood to be the most noteworthy way of exposure. It is also possible to acquire the infection through broken skin or mucous membranes that are directly exposed to the infective material.

“The aim of my research was to propose a novel mathematical equation used to describe the spread of the illness amongst pregnant women in West Africa. To achieve this, I used my newly-proposed derivative with fractional order called beta-derivative. Since none of the commonly used integral transform could be used to derive the solution of the proposed model, I proposed a new integral transform called Atangana-Transform, and used it, together with some iterative technique, to derive the solution of the model.

“My numerical simulations show that the disease is as deadly amongst pregnant women as Ebola,” Abdon said.

Abdon’s research was submitted to one of Springer’s top-tier journals with an impact factor 1.78. The paper was accepted and published February 2015.

Read more about Abdon’s research.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept