Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 May 2021 | Story Leonie Bolleurs | Photo Sonia Small
Prof Robert Bragg recently participated in a live panel discussion with leaders from the food and beverage sector, debating the challenges facing the industry and sharing their lessons and solutions.

Prof Robert Bragg from the Department of Microbiology and Biochemistry at the University of the Free State formed part of a live panel discussion with leaders from the food and beverage sector, debating the challenges facing the industry and sharing their lessons and solutions.

The discussion, part of a week-long virtual event (19-23 April), was attended by more than 1 300 attendees representing 500 food manufacturers, retailers, ingredient companies, and laboratories from 83 countries.

The magazine, New Food, coordinated the initiative that focused on food integrity. Speaking with Prof Bragg at the session that centred around animal welfare, zoonotic disease, and antibiotics, were Catherine McLaughlin, Chair, Responsible Use of Medicines in Agriculture (RUMA); Vicky Bond, UK Managing Director, The Humane League; and Daniela Battaglia, Livestock Development Officer, Food and Agriculture Organization of the United Nations (FAO).

The rise of antibiotic resistance

James Russell, President of the British Veterinary Association (BVA), was the moderator of the discussion that also touched on the issues surrounding animal welfare; how animal welfare can impact meat quality; avoiding future zoonotic disease; the rise of antibiotic resistance; ethical considerations to be mindful of; and the use of pesticides and safety considerations.

Prof Bragg specifically talked about antibiotic resistance. “Mankind has major problems with antibiotics,” he said. 

He asked if animal agriculture can be sustained without the use of antibiotics and stated that it was necessary to look at alternatives. Possible solutions he suggested include improved vaccines, bacteriophages, and phage enzymes. He, however, believes that biosecurity will be the most effective alternative. 

Living in a post-antibiotic area

Disinfectants are one of the biosecurity measures taken to minimise the risk of infectious diseases. “But it is important to be aware of the fact that as resistance to antibiotics increases the resistance to disinfectants also increases,” said Prof Bragg. 

He continued: “An increase in the use of disinfectants increases the resistance to disinfectants. This is also evident in humans, especially now during the COVID-19 pandemic. Much of these disinfectants are also of poor quality,” he said. 

According to Prof Bragg, we are living in a post-antibiotic era. “Although food standards are higher in developed countries such as in Europe – where people can pay more for poultry that were fed diets with reduced antibiotics, it is important to keep in mind that people cannot pay the same for poultry in developing countries. These countries often import poultry from countries where the food standards are not that high and where birds were treated to diets containing more antibiotics. A large supplier of poultry in Africa is small-scale farmers, who also feed their birds food containing higher levels of antibiotics.” 

“We need to look at the antibiotic problem as a global problem; a concern that will be with us for a while,” said Prof Bragg.

One solution provided by the group was for mankind to reduce its meat intake and moving to a more plant-based diet. This will have a significant effect on animal welfare as well as reducing the demand for antibiotics.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept