Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 May 2021 | Story Leonie Bolleurs | Photo Sonia Small
Prof Robert Bragg recently participated in a live panel discussion with leaders from the food and beverage sector, debating the challenges facing the industry and sharing their lessons and solutions.

Prof Robert Bragg from the Department of Microbiology and Biochemistry at the University of the Free State formed part of a live panel discussion with leaders from the food and beverage sector, debating the challenges facing the industry and sharing their lessons and solutions.

The discussion, part of a week-long virtual event (19-23 April), was attended by more than 1 300 attendees representing 500 food manufacturers, retailers, ingredient companies, and laboratories from 83 countries.

The magazine, New Food, coordinated the initiative that focused on food integrity. Speaking with Prof Bragg at the session that centred around animal welfare, zoonotic disease, and antibiotics, were Catherine McLaughlin, Chair, Responsible Use of Medicines in Agriculture (RUMA); Vicky Bond, UK Managing Director, The Humane League; and Daniela Battaglia, Livestock Development Officer, Food and Agriculture Organization of the United Nations (FAO).

The rise of antibiotic resistance

James Russell, President of the British Veterinary Association (BVA), was the moderator of the discussion that also touched on the issues surrounding animal welfare; how animal welfare can impact meat quality; avoiding future zoonotic disease; the rise of antibiotic resistance; ethical considerations to be mindful of; and the use of pesticides and safety considerations.

Prof Bragg specifically talked about antibiotic resistance. “Mankind has major problems with antibiotics,” he said. 

He asked if animal agriculture can be sustained without the use of antibiotics and stated that it was necessary to look at alternatives. Possible solutions he suggested include improved vaccines, bacteriophages, and phage enzymes. He, however, believes that biosecurity will be the most effective alternative. 

Living in a post-antibiotic area

Disinfectants are one of the biosecurity measures taken to minimise the risk of infectious diseases. “But it is important to be aware of the fact that as resistance to antibiotics increases the resistance to disinfectants also increases,” said Prof Bragg. 

He continued: “An increase in the use of disinfectants increases the resistance to disinfectants. This is also evident in humans, especially now during the COVID-19 pandemic. Much of these disinfectants are also of poor quality,” he said. 

According to Prof Bragg, we are living in a post-antibiotic era. “Although food standards are higher in developed countries such as in Europe – where people can pay more for poultry that were fed diets with reduced antibiotics, it is important to keep in mind that people cannot pay the same for poultry in developing countries. These countries often import poultry from countries where the food standards are not that high and where birds were treated to diets containing more antibiotics. A large supplier of poultry in Africa is small-scale farmers, who also feed their birds food containing higher levels of antibiotics.” 

“We need to look at the antibiotic problem as a global problem; a concern that will be with us for a while,” said Prof Bragg.

One solution provided by the group was for mankind to reduce its meat intake and moving to a more plant-based diet. This will have a significant effect on animal welfare as well as reducing the demand for antibiotics.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept