Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2021 | Story Leonie Bolleurs | Photo Supplied
Andries van der Merwe was presented the Koos van der Merwe AFMA Student of the Year Award as the most outstanding final-year student in Animal Nutrition in 2021/2022.

Since childhood, a love of animals, nature, and agriculture has been instilled in Andries van der Merwe. He used to accompany his father, the local veterinarian in Postmasburg, helping where he could. “I can still vividly remember the first C-section I helped him with when I was about 12,” he says. 

A few years later, Andries decided to enrol for his studies at the University of the Free State (UFS) in order to get his grades up to study veterinary medicine one day. “But when I reached my third year and started with the subject Animal Nutrition, I saw that I could make a bigger difference and contribution to the agricultural sector through nutrition. The moment I realised this, my mind was made up to study towards becoming an animal nutritionist,” he says.

Viable alternative to the excessive use of antibiotics

His master’s thesis on the use of tannins as a feed additive to increase the production efficiency of ruminants (sheep, cattle, and goats) is also looking for a viable alternative to the excessive use of antibiotics to treat certain non-specific ailments such as diarrhoea and skin diseases.

With his work having the potential to one day make a difference in the agricultural sector, as well as some encouragement from his supervisor, Dr Ockert Einkamerer, Senior Lecturer in the Department of Animal Science, Andries entered and won AFMA’s Student of the Year competition. 

During a virtual symposium on 18 October 2021, the Animal Feed Manufacturers Association (AFMA) presented Andries with the Koos van der Merwe AFMA Student of the Year Award as the most outstanding final-year student in Animal Nutrition in 2021/2022.

“I have no idea what could have impressed the judges”, says Andries, who competed with students from universities across South Africa. 

Making a contribution to animal feeding in South Africa

“I am the second student from the UFS to win this award. Gert Daniel Jacobus Scholtz received the award in 1998 – my birth year,” says Andries. 

“It is an enormous honour for me to receive this highly prestigious award. I believe that the exposure I receive due to this reward will help me to secure a position where I can make a valuable contribution to the industry much quicker,” he adds.

De Wet Boshoff, Executive Director of AFMA, commended Andries: “I wish to congratulate you on behalf of the Animal Feed Manufacturers Association (AFMA) on winning the award. I believe it will encourage you to – through further studies and your career in the future – make a contribution to animal feeding in the Republic of South Africa.”

The award consists of a certificate and a cash amount of R20 000 sponsored by AFMA.

Andries is planning on completing his master’s degree. “I am considering a PhD and a Master’s of Business Administration. The latter is to ensure that I will be a vital part of any company in the industry,” he says.

“What is meant to happen will happen … you just need to have faith,” he believes.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept