Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 November 2021 | Story André Damons
Digital Scholarship Centre DSC
The recently established Digital Scholarship Centre (DSC) at the UFS is playing an important role in contributing to the development of a collaborative research culture at the university.

The recently established Digital Scholarship Centre (DSC) at the University of the Free State (UFS) is playing a pivotal role in contributing to the development of a collaborative research culture at the university – from cross-faculty and international collaboration to support and administrative services for research.

The DSC was established after an investigation by the Library and Information Services (LIS) to determine the need for digital scholarship support in order to help escalate research output and quality and to support the institutional strategic aim of being a research-led university. The investigation clearly revealed that digital scholarship services would have a significant impact on the UFS' strategic purposes.

Cornelle Scheltema-Van Wyk, Manager of the DSC, says the centre is there to help increase research output, research visibility and impact, and ultimately, the reputation of the university as a research-led institution. “And we do this within the digital scholarship environment (which exists because of digital technology, the internet, and open scholarship), providing researchers with support to use digital methods to enhance their work,” says Scheltema-Van Wyk. 

A pilot project for the DSC was run last year by a work group consisting of representatives from LIS, the Directorate of Research Development (DRD), and ICT Services. An acting manager was appointed, and a web presence was created for the DSC. 

Assistance for researchers
It was clear from the investigation that the research community at the university needed help navigating the digital landscape, determining what services and support systems exist, and how to find, access, and use them. The investigation revealed that researchers are looking for
  • a one-stop shop for research support;
  • increased awareness of services at the university;
  • information, guidance, and training for researchers to enable them to discover, request, and use research support services and digital technologies;
  • creating a strong online presence, while also providing a physical hub with equipment that many researchers cannot afford, as well as a ‘haven’ with an ‘inspiring atmosphere’ to do research when offices become too distracting due to administrative tasks and students;
  • assistance with creating and using collaborative online environments for collaborative research projects;
  • assistance with the open science environment, specifically with regard to open access publishing, funding for open access publishing, and open methods in research; and
  • support for research data management, specifically the development of a research data policy and a data repository at the university.

The centre, which has its roots in the digital, open, and networked environment, also helps to maximise the effectiveness of scarce and limited resources by minimising duplication, not only in research practice with the help of research data management, for example, but also at support level with knowledge of the institutional research environment and where resources can be shared. DSC works to maintain awareness of all relevant resources and can assist with connection and coordination. It also provides information, guidance, training, support services for digital scholarship as well as technology and software, consultation, spaces, and referrals to services such as high-performance computing. 

According to Scheltema-Van Wyk, the benefit of digital scholarship services with a main hub to act as coordinator and consolidator is that the hub has a wider view of the research environment at the institution throughout the research cycle. This includes the planning stages of a research project where a researcher needs to acquire equipment, to data collection and analysis in a digital world, to the preservation of research, and publication in a new scholarly communication environment.

The pilot projects

The UFS has a good foundation of capabilities when it comes to existing research support services for digital scholarship and has developed these capabilities over the past ten years. This includes the High-Performance Computing unit in ICT Services, innovation support by the DRD via KovsieInnovation, and digitisation, digital collections infrastructure, electronic publishing, and repository services at LIS. These support services are very successful from a production standpoint, but the success of visibility and engagement with these services at the institution is more varied.

“The pilot projects illustrated the benefits of the DSC, where researchers were able to contact the centre with questions ranging from how to install research software on their computers, the process of acquiring mobile applications for research purposes (the DSC liaised with Finance to create a process), to setting up online academic seminars and getting third-party applications to work with university resources,” says Scheltema-Van Wyk. 

The knowledge gained from these service requests has already provided the DSC with a broader knowledge of the research environment at the university and allowed recommendations for collaboration and the sharing of resources and expertise in the community.

The DSC uses a hub-and-spoke service model. This model includes a strong central node that links to many other resources. Knowledge, expertise, staff, and services are embedded in academic departments, interdisciplinary units (for example, the newly established Interdisciplinary Centre for Digital Futures), libraries and other service points around the university, which are connected and coordinated through this central node.

The advantage of this model is that it allows growth to take place organically. Services and expertise develop where needed, rather than researchers depending on a centralised unit that may lack the resources to meet ever-evolving digital scholarship needs. Distributed knowledge and skills, however, make it difficult to identify where to go for specific services, training, and assistance. The DSC as a central hub combats the confusion this may cause, linking to the various spokes at the institution.

Prof Corli Witthuhn, Vice-Rector: Research and Internationalisation, says the DSC is at the forefront of providing support to our world-leading researchers on the latest developments in the digital research arena. We are committed to continuing our cutting-edge support and novel approaches to developing the UFS as a research-led university.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept