Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 November 2021 | Story André Damons
Digital Scholarship Centre DSC
The recently established Digital Scholarship Centre (DSC) at the UFS is playing an important role in contributing to the development of a collaborative research culture at the university.

The recently established Digital Scholarship Centre (DSC) at the University of the Free State (UFS) is playing a pivotal role in contributing to the development of a collaborative research culture at the university – from cross-faculty and international collaboration to support and administrative services for research.

The DSC was established after an investigation by the Library and Information Services (LIS) to determine the need for digital scholarship support in order to help escalate research output and quality and to support the institutional strategic aim of being a research-led university. The investigation clearly revealed that digital scholarship services would have a significant impact on the UFS' strategic purposes.

Cornelle Scheltema-Van Wyk, Manager of the DSC, says the centre is there to help increase research output, research visibility and impact, and ultimately, the reputation of the university as a research-led institution. “And we do this within the digital scholarship environment (which exists because of digital technology, the internet, and open scholarship), providing researchers with support to use digital methods to enhance their work,” says Scheltema-Van Wyk. 

A pilot project for the DSC was run last year by a work group consisting of representatives from LIS, the Directorate of Research Development (DRD), and ICT Services. An acting manager was appointed, and a web presence was created for the DSC. 

Assistance for researchers
It was clear from the investigation that the research community at the university needed help navigating the digital landscape, determining what services and support systems exist, and how to find, access, and use them. The investigation revealed that researchers are looking for
  • a one-stop shop for research support;
  • increased awareness of services at the university;
  • information, guidance, and training for researchers to enable them to discover, request, and use research support services and digital technologies;
  • creating a strong online presence, while also providing a physical hub with equipment that many researchers cannot afford, as well as a ‘haven’ with an ‘inspiring atmosphere’ to do research when offices become too distracting due to administrative tasks and students;
  • assistance with creating and using collaborative online environments for collaborative research projects;
  • assistance with the open science environment, specifically with regard to open access publishing, funding for open access publishing, and open methods in research; and
  • support for research data management, specifically the development of a research data policy and a data repository at the university.

The centre, which has its roots in the digital, open, and networked environment, also helps to maximise the effectiveness of scarce and limited resources by minimising duplication, not only in research practice with the help of research data management, for example, but also at support level with knowledge of the institutional research environment and where resources can be shared. DSC works to maintain awareness of all relevant resources and can assist with connection and coordination. It also provides information, guidance, training, support services for digital scholarship as well as technology and software, consultation, spaces, and referrals to services such as high-performance computing. 

According to Scheltema-Van Wyk, the benefit of digital scholarship services with a main hub to act as coordinator and consolidator is that the hub has a wider view of the research environment at the institution throughout the research cycle. This includes the planning stages of a research project where a researcher needs to acquire equipment, to data collection and analysis in a digital world, to the preservation of research, and publication in a new scholarly communication environment.

The pilot projects

The UFS has a good foundation of capabilities when it comes to existing research support services for digital scholarship and has developed these capabilities over the past ten years. This includes the High-Performance Computing unit in ICT Services, innovation support by the DRD via KovsieInnovation, and digitisation, digital collections infrastructure, electronic publishing, and repository services at LIS. These support services are very successful from a production standpoint, but the success of visibility and engagement with these services at the institution is more varied.

“The pilot projects illustrated the benefits of the DSC, where researchers were able to contact the centre with questions ranging from how to install research software on their computers, the process of acquiring mobile applications for research purposes (the DSC liaised with Finance to create a process), to setting up online academic seminars and getting third-party applications to work with university resources,” says Scheltema-Van Wyk. 

The knowledge gained from these service requests has already provided the DSC with a broader knowledge of the research environment at the university and allowed recommendations for collaboration and the sharing of resources and expertise in the community.

The DSC uses a hub-and-spoke service model. This model includes a strong central node that links to many other resources. Knowledge, expertise, staff, and services are embedded in academic departments, interdisciplinary units (for example, the newly established Interdisciplinary Centre for Digital Futures), libraries and other service points around the university, which are connected and coordinated through this central node.

The advantage of this model is that it allows growth to take place organically. Services and expertise develop where needed, rather than researchers depending on a centralised unit that may lack the resources to meet ever-evolving digital scholarship needs. Distributed knowledge and skills, however, make it difficult to identify where to go for specific services, training, and assistance. The DSC as a central hub combats the confusion this may cause, linking to the various spokes at the institution.

Prof Corli Witthuhn, Vice-Rector: Research and Internationalisation, says the DSC is at the forefront of providing support to our world-leading researchers on the latest developments in the digital research arena. We are committed to continuing our cutting-edge support and novel approaches to developing the UFS as a research-led university.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept