Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 November 2021 | Story André Damons
Digital Scholarship Centre DSC
The recently established Digital Scholarship Centre (DSC) at the UFS is playing an important role in contributing to the development of a collaborative research culture at the university.

The recently established Digital Scholarship Centre (DSC) at the University of the Free State (UFS) is playing a pivotal role in contributing to the development of a collaborative research culture at the university – from cross-faculty and international collaboration to support and administrative services for research.

The DSC was established after an investigation by the Library and Information Services (LIS) to determine the need for digital scholarship support in order to help escalate research output and quality and to support the institutional strategic aim of being a research-led university. The investigation clearly revealed that digital scholarship services would have a significant impact on the UFS' strategic purposes.

Cornelle Scheltema-Van Wyk, Manager of the DSC, says the centre is there to help increase research output, research visibility and impact, and ultimately, the reputation of the university as a research-led institution. “And we do this within the digital scholarship environment (which exists because of digital technology, the internet, and open scholarship), providing researchers with support to use digital methods to enhance their work,” says Scheltema-Van Wyk. 

A pilot project for the DSC was run last year by a work group consisting of representatives from LIS, the Directorate of Research Development (DRD), and ICT Services. An acting manager was appointed, and a web presence was created for the DSC. 

Assistance for researchers
It was clear from the investigation that the research community at the university needed help navigating the digital landscape, determining what services and support systems exist, and how to find, access, and use them. The investigation revealed that researchers are looking for
  • a one-stop shop for research support;
  • increased awareness of services at the university;
  • information, guidance, and training for researchers to enable them to discover, request, and use research support services and digital technologies;
  • creating a strong online presence, while also providing a physical hub with equipment that many researchers cannot afford, as well as a ‘haven’ with an ‘inspiring atmosphere’ to do research when offices become too distracting due to administrative tasks and students;
  • assistance with creating and using collaborative online environments for collaborative research projects;
  • assistance with the open science environment, specifically with regard to open access publishing, funding for open access publishing, and open methods in research; and
  • support for research data management, specifically the development of a research data policy and a data repository at the university.

The centre, which has its roots in the digital, open, and networked environment, also helps to maximise the effectiveness of scarce and limited resources by minimising duplication, not only in research practice with the help of research data management, for example, but also at support level with knowledge of the institutional research environment and where resources can be shared. DSC works to maintain awareness of all relevant resources and can assist with connection and coordination. It also provides information, guidance, training, support services for digital scholarship as well as technology and software, consultation, spaces, and referrals to services such as high-performance computing. 

According to Scheltema-Van Wyk, the benefit of digital scholarship services with a main hub to act as coordinator and consolidator is that the hub has a wider view of the research environment at the institution throughout the research cycle. This includes the planning stages of a research project where a researcher needs to acquire equipment, to data collection and analysis in a digital world, to the preservation of research, and publication in a new scholarly communication environment.

The pilot projects

The UFS has a good foundation of capabilities when it comes to existing research support services for digital scholarship and has developed these capabilities over the past ten years. This includes the High-Performance Computing unit in ICT Services, innovation support by the DRD via KovsieInnovation, and digitisation, digital collections infrastructure, electronic publishing, and repository services at LIS. These support services are very successful from a production standpoint, but the success of visibility and engagement with these services at the institution is more varied.

“The pilot projects illustrated the benefits of the DSC, where researchers were able to contact the centre with questions ranging from how to install research software on their computers, the process of acquiring mobile applications for research purposes (the DSC liaised with Finance to create a process), to setting up online academic seminars and getting third-party applications to work with university resources,” says Scheltema-Van Wyk. 

The knowledge gained from these service requests has already provided the DSC with a broader knowledge of the research environment at the university and allowed recommendations for collaboration and the sharing of resources and expertise in the community.

The DSC uses a hub-and-spoke service model. This model includes a strong central node that links to many other resources. Knowledge, expertise, staff, and services are embedded in academic departments, interdisciplinary units (for example, the newly established Interdisciplinary Centre for Digital Futures), libraries and other service points around the university, which are connected and coordinated through this central node.

The advantage of this model is that it allows growth to take place organically. Services and expertise develop where needed, rather than researchers depending on a centralised unit that may lack the resources to meet ever-evolving digital scholarship needs. Distributed knowledge and skills, however, make it difficult to identify where to go for specific services, training, and assistance. The DSC as a central hub combats the confusion this may cause, linking to the various spokes at the institution.

Prof Corli Witthuhn, Vice-Rector: Research and Internationalisation, says the DSC is at the forefront of providing support to our world-leading researchers on the latest developments in the digital research arena. We are committed to continuing our cutting-edge support and novel approaches to developing the UFS as a research-led university.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept