Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 November 2021 | Story André Damons
Digital Scholarship Centre DSC
The recently established Digital Scholarship Centre (DSC) at the UFS is playing an important role in contributing to the development of a collaborative research culture at the university.

The recently established Digital Scholarship Centre (DSC) at the University of the Free State (UFS) is playing a pivotal role in contributing to the development of a collaborative research culture at the university – from cross-faculty and international collaboration to support and administrative services for research.

The DSC was established after an investigation by the Library and Information Services (LIS) to determine the need for digital scholarship support in order to help escalate research output and quality and to support the institutional strategic aim of being a research-led university. The investigation clearly revealed that digital scholarship services would have a significant impact on the UFS' strategic purposes.

Cornelle Scheltema-Van Wyk, Manager of the DSC, says the centre is there to help increase research output, research visibility and impact, and ultimately, the reputation of the university as a research-led institution. “And we do this within the digital scholarship environment (which exists because of digital technology, the internet, and open scholarship), providing researchers with support to use digital methods to enhance their work,” says Scheltema-Van Wyk. 

A pilot project for the DSC was run last year by a work group consisting of representatives from LIS, the Directorate of Research Development (DRD), and ICT Services. An acting manager was appointed, and a web presence was created for the DSC. 

Assistance for researchers
It was clear from the investigation that the research community at the university needed help navigating the digital landscape, determining what services and support systems exist, and how to find, access, and use them. The investigation revealed that researchers are looking for
  • a one-stop shop for research support;
  • increased awareness of services at the university;
  • information, guidance, and training for researchers to enable them to discover, request, and use research support services and digital technologies;
  • creating a strong online presence, while also providing a physical hub with equipment that many researchers cannot afford, as well as a ‘haven’ with an ‘inspiring atmosphere’ to do research when offices become too distracting due to administrative tasks and students;
  • assistance with creating and using collaborative online environments for collaborative research projects;
  • assistance with the open science environment, specifically with regard to open access publishing, funding for open access publishing, and open methods in research; and
  • support for research data management, specifically the development of a research data policy and a data repository at the university.

The centre, which has its roots in the digital, open, and networked environment, also helps to maximise the effectiveness of scarce and limited resources by minimising duplication, not only in research practice with the help of research data management, for example, but also at support level with knowledge of the institutional research environment and where resources can be shared. DSC works to maintain awareness of all relevant resources and can assist with connection and coordination. It also provides information, guidance, training, support services for digital scholarship as well as technology and software, consultation, spaces, and referrals to services such as high-performance computing. 

According to Scheltema-Van Wyk, the benefit of digital scholarship services with a main hub to act as coordinator and consolidator is that the hub has a wider view of the research environment at the institution throughout the research cycle. This includes the planning stages of a research project where a researcher needs to acquire equipment, to data collection and analysis in a digital world, to the preservation of research, and publication in a new scholarly communication environment.

The pilot projects

The UFS has a good foundation of capabilities when it comes to existing research support services for digital scholarship and has developed these capabilities over the past ten years. This includes the High-Performance Computing unit in ICT Services, innovation support by the DRD via KovsieInnovation, and digitisation, digital collections infrastructure, electronic publishing, and repository services at LIS. These support services are very successful from a production standpoint, but the success of visibility and engagement with these services at the institution is more varied.

“The pilot projects illustrated the benefits of the DSC, where researchers were able to contact the centre with questions ranging from how to install research software on their computers, the process of acquiring mobile applications for research purposes (the DSC liaised with Finance to create a process), to setting up online academic seminars and getting third-party applications to work with university resources,” says Scheltema-Van Wyk. 

The knowledge gained from these service requests has already provided the DSC with a broader knowledge of the research environment at the university and allowed recommendations for collaboration and the sharing of resources and expertise in the community.

The DSC uses a hub-and-spoke service model. This model includes a strong central node that links to many other resources. Knowledge, expertise, staff, and services are embedded in academic departments, interdisciplinary units (for example, the newly established Interdisciplinary Centre for Digital Futures), libraries and other service points around the university, which are connected and coordinated through this central node.

The advantage of this model is that it allows growth to take place organically. Services and expertise develop where needed, rather than researchers depending on a centralised unit that may lack the resources to meet ever-evolving digital scholarship needs. Distributed knowledge and skills, however, make it difficult to identify where to go for specific services, training, and assistance. The DSC as a central hub combats the confusion this may cause, linking to the various spokes at the institution.

Prof Corli Witthuhn, Vice-Rector: Research and Internationalisation, says the DSC is at the forefront of providing support to our world-leading researchers on the latest developments in the digital research arena. We are committed to continuing our cutting-edge support and novel approaches to developing the UFS as a research-led university.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept