Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 November 2021 | Story Dr Nitha Ramnath | Photo Supplied


“Running provides me with a platform to reach others, to bring hope, to make people realise that anything is possible if you are prepared to work hard for it,” says Louzanne Coetzee, our very own home-grown all-round achiever, who is fun-loving, relatable, and inspiring. A South African para-athlete, Coetzee was born blind as a result of a hereditary condition called Leber congenital amaurosis, and competes in the T11 disability class for athletes with the highest level of visual impairment. Coetzee enjoys an integrated life, with an interest in baking, watching movies, walking and hiking, cycling, being part of a church band, public speaking, coupled with some artistic hobbies.

Our podcast guest

Coetzee competed at the 2020 Tokyo Paralympic Games this year, where she won a silver medal in the 1 500 m final alongside her guide Erasmus Badenshorst, setting a new African record of 4:40.96. She also competed in the women’s mixed class marathon (T11 and T12 for the visually impaired) with her guide Claus Kempen, improving the world record by 1 min 42 sec and her personal best from 3:13:41 to 3:11:13. 

In 2018, Coetzee competed in three events at the Para Athletics event in Berlin, Germany – the 800 m, 1 500 m, and 5 000 m. She set a new African record in the T11 800 m race, taking the silver medal, as well as a bronze for the 1 500 m race. In 2018, Coetzee also broke the 5 000 m (women) world record in her disability class, while in the same year she became the first visually impaired athlete to compete at the World University Cross Country Championships in Switzerland. 
Coetzee set a new world record in the 5 000 m T11 category for the first time at the Nedbank National Championships for the Physically Disabled in March 2016. Moreover, with her performance of 19:17.06, Coetzee shattered the Lithuanian athlete Sigita Markeviciene’s 16-year record of 20:05.81, set at the 2000 Paralympics in Sydney. Coetzee became the first totally blind female to clock sub-20 minutes in the 5 000 m.

Her involvement in her society stretches beyond sports, and as a student, she formed part of the University of the Free State Student Representative Council. She was also an athlete representative on the Free State Academy of Sport’s executive committee.

In 2014, she became the first visually impaired student to be elected to the UFS Student Representative Council (SRC), with the portfolio Student Accessibility. From 2015 to 2017, she was a research assistant in the Institute for Reconciliation and Social Justice at the UFS, and in 2016 she also acted as junior lecturer in a computer module for students with visual impairments. From 2017 to 2018, she was Residence Head of Arista Ladies City Residence, and she is currently the Residence Head of Akasia Residence at the UFS.  

Coetzee boasts several accolades from the UFS. She was named the 2014 Senior Sportswoman of the Year by the Free State Sport Association for the Physically Disabled (FSSAPD). In 2017, she and her guide Khothatso Mokone received a Special Award for Disabled Sport at the KovsieSport Awards. In 2018, she won the Free State Sports Star Award, and was named Sports Star of the Year (period June 2018 to April 2019) by the Free State Sport Association for the Physically Disabled. 

Coetzee’s academic qualifications include a BA and BAHons in Integrated and Corporative Marketing Communication, and an MA in Social Cohesion and Reconciliation – all from the University of the Free State. 
Listen to the podcast  below

François van Schalkwyk and Keenan Carelse, UFS alumni leading the university’s United Kingdom Alumni Chapter, have put their voices together to produce and direct the podcast series.  Intended to reconnect alumni with the university and their university experience, the podcasts will be featured on the first Monday of every month, ending in November 2021.  Our featured alumni share and reflect on their experiences at the UFS, how it has shaped their lives, and relate why their ongoing association with the UFS is still relevant and important. The podcasts are authentic conversations – they provide an opportunity for the university to understand and learn about the experiences of its alumni and to celebrate the diversity and touchpoints that unite them. 

For further information regarding the podcast series, or to propose other alumni guests, please email us at alumnipodcast@ufs.ac.za 

For all Voices from the Free State podcasts, click here 
    

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept