Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 November 2021 | Story Dr Nitha Ramnath | Photo Supplied


“Running provides me with a platform to reach others, to bring hope, to make people realise that anything is possible if you are prepared to work hard for it,” says Louzanne Coetzee, our very own home-grown all-round achiever, who is fun-loving, relatable, and inspiring. A South African para-athlete, Coetzee was born blind as a result of a hereditary condition called Leber congenital amaurosis, and competes in the T11 disability class for athletes with the highest level of visual impairment. Coetzee enjoys an integrated life, with an interest in baking, watching movies, walking and hiking, cycling, being part of a church band, public speaking, coupled with some artistic hobbies.

Our podcast guest

Coetzee competed at the 2020 Tokyo Paralympic Games this year, where she won a silver medal in the 1 500 m final alongside her guide Erasmus Badenshorst, setting a new African record of 4:40.96. She also competed in the women’s mixed class marathon (T11 and T12 for the visually impaired) with her guide Claus Kempen, improving the world record by 1 min 42 sec and her personal best from 3:13:41 to 3:11:13. 

In 2018, Coetzee competed in three events at the Para Athletics event in Berlin, Germany – the 800 m, 1 500 m, and 5 000 m. She set a new African record in the T11 800 m race, taking the silver medal, as well as a bronze for the 1 500 m race. In 2018, Coetzee also broke the 5 000 m (women) world record in her disability class, while in the same year she became the first visually impaired athlete to compete at the World University Cross Country Championships in Switzerland. 
Coetzee set a new world record in the 5 000 m T11 category for the first time at the Nedbank National Championships for the Physically Disabled in March 2016. Moreover, with her performance of 19:17.06, Coetzee shattered the Lithuanian athlete Sigita Markeviciene’s 16-year record of 20:05.81, set at the 2000 Paralympics in Sydney. Coetzee became the first totally blind female to clock sub-20 minutes in the 5 000 m.

Her involvement in her society stretches beyond sports, and as a student, she formed part of the University of the Free State Student Representative Council. She was also an athlete representative on the Free State Academy of Sport’s executive committee.

In 2014, she became the first visually impaired student to be elected to the UFS Student Representative Council (SRC), with the portfolio Student Accessibility. From 2015 to 2017, she was a research assistant in the Institute for Reconciliation and Social Justice at the UFS, and in 2016 she also acted as junior lecturer in a computer module for students with visual impairments. From 2017 to 2018, she was Residence Head of Arista Ladies City Residence, and she is currently the Residence Head of Akasia Residence at the UFS.  

Coetzee boasts several accolades from the UFS. She was named the 2014 Senior Sportswoman of the Year by the Free State Sport Association for the Physically Disabled (FSSAPD). In 2017, she and her guide Khothatso Mokone received a Special Award for Disabled Sport at the KovsieSport Awards. In 2018, she won the Free State Sports Star Award, and was named Sports Star of the Year (period June 2018 to April 2019) by the Free State Sport Association for the Physically Disabled. 

Coetzee’s academic qualifications include a BA and BAHons in Integrated and Corporative Marketing Communication, and an MA in Social Cohesion and Reconciliation – all from the University of the Free State. 
Listen to the podcast  below

François van Schalkwyk and Keenan Carelse, UFS alumni leading the university’s United Kingdom Alumni Chapter, have put their voices together to produce and direct the podcast series.  Intended to reconnect alumni with the university and their university experience, the podcasts will be featured on the first Monday of every month, ending in November 2021.  Our featured alumni share and reflect on their experiences at the UFS, how it has shaped their lives, and relate why their ongoing association with the UFS is still relevant and important. The podcasts are authentic conversations – they provide an opportunity for the university to understand and learn about the experiences of its alumni and to celebrate the diversity and touchpoints that unite them. 

For further information regarding the podcast series, or to propose other alumni guests, please email us at alumnipodcast@ufs.ac.za 

For all Voices from the Free State podcasts, click here 
    

News Archive

Water erosion research help determine future of dams
2017-03-07

Description: Dr Jay le Roux Tags: Dr Jay le Roux

Dr Jay le Roux, one of 31 new NRF-rated
researchers at the University of the Free State,
aims for a higher rating from the NRF.
Photo: Rulanzen Martin

“This rating will motivate me to do more research, to improve outcomes, and to aim for a higher C-rating.” This was the response of Dr Jay le Roux, who was recently graded as an Y2-rated researcher by the National Research Foundation (NRF).

Dr Le Roux, senior lecturer in the Department of Geography at the University of the Free State (UFS), is one of 31 new NRF-rated researchers at the UFS. “This grading will make it possible to focus on more specific research during field research and to come in contact with other experts. Researchers are graded on their potential or contribution in their respective fields,” he said.

Research assess different techniques
His research on water erosion risk in South Africa (SA) is a methodological framework with three hierarchal levels presented. It was done in collaboration with the University of Pretoria (UP), Water Research Commission, Department of Agriculture, Forestry and Fisheries, and recently Rhodes University and the Department of Environmental Affairs. Dr Le Roux was registered for 5 years at UP, while working full-time for the Agricultural Research Council – Institute for Soil, Climate and Water (ARC-ISCW).

Water erosion risk assessment in South Africa: towards a methodological framework
, illustrates the most feasible erosion assessment techniques and input datasets that can be used to map water erosion features in SA. It also emphasises the simplicity required for application at a regional scale, with proper incorporation of the most important erosion-causal factors.

The main feature that distinguishes this approach from previous studies is the fact that this study interprets erosion features as individual sediment sources. Modelling the sediment yield contribution from gully erosion (also known as dongas) with emphasis on connectivity and sediment transport, can be considered as an important step towards the assessment of sediment produce at regional scale. 
 
Dams a pivotal element in river networks

Soil is an important, but limited natural resource in SA. Soil erosion not only involves loss of fertile topsoil and reduction of soil productivity, but is also coupled with serious off-site impacts related to increased mobilisation of sediment and delivery to rivers.

The siltation of dams is a big problem in SA, especially dams that are located in eroded catchment areas. Dr Le Roux recently developed a model to assess sediment yield contribution from gully erosion at a large catchment scale. “The Mzimvubu River Catchment is the only large river network in SA on record without a dam.” The flow and sediment yield in the catchment made it possible to estimate dam life expectancies on between 43 and 55 years for future dams in the area.
 
Future model to assess soil erosion
“I plan to finalise a soil erosion model that will determine the sediment yield of gully erosion on a bigger scale.” It will be useful to determine the lifespan of dams where gully erosion is a big problem. Two of his PhD students are currently working on project proposals to assess soil erosion with the help of remote sensing techniques.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept