Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 November 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Abdon Atangana was recently elected a fellow of The World Academy of Sciences (TWAS).

Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS), was recently elected a fellow of The World Academy of Sciences (TWAS).

He also received the World Academy of Sciences Award for Mathematics (TWAS -Mohammad A. Hamdan, 2020) on 1 November 2021.

TWAS, described as the voice for science in the South, is working towards the advancement of science in developing countries and supports sustainable prosperity through research, education, policy, and diplomacy. 

Outstanding contribution to science

Prof Mohamed HA Hassan, President of TWAS, congratulated Prof Atangana on this prestigious achievement, “Your election as fellow is a clear recognition of your outstanding contribution to science and its promotion in the developing world. We will be honoured to have you among our members.”

Candidates elected as TWAS Fellows are scientists whose contributions to their respective fields of science meet internationally accepted standards of excellence, and they must have distinguished themselves in efforts to promote science in developing countries. 

Prof Atangana is known for his research to develop a new fractional operator, the Atangana-Baleanu operator, which is to model real-world problems. With this operator, he not only describes the rate at which something will change, but also account for disrupting factors that will help to produce better projections.

Among others, his models can advise people drilling for water by predicting how groundwater is flowing in a complex geological formation. Furthermore, his work can also be applied to predict the spread of infectious diseases among people in a settlement, forecasting the number of people who will be infected each day, the number of people who will recover, and the number of people who will die. 

These are only two examples of how his work can be applied to better the lives of people.

Promoting science in the developing world

Besides promoting science in the developing world, Prof Atangana’s work also contributes to the United Nations Sustainable Development Goals – the global goals as set in 2015 that call for ending poverty, protecting the planet, and ensuring that all people enjoy prosperity and peace.

Prof Atangana says the election as fellow is a clear recognition of his outstanding contribution to science and its promotion in the developing world. “My work over the past five years has made a great impact in all fields of science, technology, and engineering.”

To be elected as TWAS fellow in mathematics, made him the second South African researcher to be elected in the field of mathematics (the first person elected was Prof Reddy Batmanathan Dayanand, who was elected in 2003). This also placed him as the sixth African mathematician to be elected as a TWAS fellow.

Very recently, he also ranked number one in the world in mathematics, number 186 in the world in all the fields, and number one in Africa in all the fields, according to the Stanford list of 2% single-year table.

He was also named among the top 1% of scientists on the global Clarivate Web of Science list. Less than 6 200 or 0,1% of the world's researchers were included on this list in 2020, with no more than 10 of the scientists hailing from South Africa. 

Prof Atangana is also editor of more than 20 top-tier journals of applied mathematics and mathematics, and for some of these journals he was the first African to be selected as editor. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept