Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 November 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Abdon Atangana was recently elected a fellow of The World Academy of Sciences (TWAS).

Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS), was recently elected a fellow of The World Academy of Sciences (TWAS).

He also received the World Academy of Sciences Award for Mathematics (TWAS -Mohammad A. Hamdan, 2020) on 1 November 2021.

TWAS, described as the voice for science in the South, is working towards the advancement of science in developing countries and supports sustainable prosperity through research, education, policy, and diplomacy. 

Outstanding contribution to science

Prof Mohamed HA Hassan, President of TWAS, congratulated Prof Atangana on this prestigious achievement, “Your election as fellow is a clear recognition of your outstanding contribution to science and its promotion in the developing world. We will be honoured to have you among our members.”

Candidates elected as TWAS Fellows are scientists whose contributions to their respective fields of science meet internationally accepted standards of excellence, and they must have distinguished themselves in efforts to promote science in developing countries. 

Prof Atangana is known for his research to develop a new fractional operator, the Atangana-Baleanu operator, which is to model real-world problems. With this operator, he not only describes the rate at which something will change, but also account for disrupting factors that will help to produce better projections.

Among others, his models can advise people drilling for water by predicting how groundwater is flowing in a complex geological formation. Furthermore, his work can also be applied to predict the spread of infectious diseases among people in a settlement, forecasting the number of people who will be infected each day, the number of people who will recover, and the number of people who will die. 

These are only two examples of how his work can be applied to better the lives of people.

Promoting science in the developing world

Besides promoting science in the developing world, Prof Atangana’s work also contributes to the United Nations Sustainable Development Goals – the global goals as set in 2015 that call for ending poverty, protecting the planet, and ensuring that all people enjoy prosperity and peace.

Prof Atangana says the election as fellow is a clear recognition of his outstanding contribution to science and its promotion in the developing world. “My work over the past five years has made a great impact in all fields of science, technology, and engineering.”

To be elected as TWAS fellow in mathematics, made him the second South African researcher to be elected in the field of mathematics (the first person elected was Prof Reddy Batmanathan Dayanand, who was elected in 2003). This also placed him as the sixth African mathematician to be elected as a TWAS fellow.

Very recently, he also ranked number one in the world in mathematics, number 186 in the world in all the fields, and number one in Africa in all the fields, according to the Stanford list of 2% single-year table.

He was also named among the top 1% of scientists on the global Clarivate Web of Science list. Less than 6 200 or 0,1% of the world's researchers were included on this list in 2020, with no more than 10 of the scientists hailing from South Africa. 

Prof Atangana is also editor of more than 20 top-tier journals of applied mathematics and mathematics, and for some of these journals he was the first African to be selected as editor. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept