Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 November 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Abdon Atangana was recently elected a fellow of The World Academy of Sciences (TWAS).

Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS), was recently elected a fellow of The World Academy of Sciences (TWAS).

He also received the World Academy of Sciences Award for Mathematics (TWAS -Mohammad A. Hamdan, 2020) on 1 November 2021.

TWAS, described as the voice for science in the South, is working towards the advancement of science in developing countries and supports sustainable prosperity through research, education, policy, and diplomacy. 

Outstanding contribution to science

Prof Mohamed HA Hassan, President of TWAS, congratulated Prof Atangana on this prestigious achievement, “Your election as fellow is a clear recognition of your outstanding contribution to science and its promotion in the developing world. We will be honoured to have you among our members.”

Candidates elected as TWAS Fellows are scientists whose contributions to their respective fields of science meet internationally accepted standards of excellence, and they must have distinguished themselves in efforts to promote science in developing countries. 

Prof Atangana is known for his research to develop a new fractional operator, the Atangana-Baleanu operator, which is to model real-world problems. With this operator, he not only describes the rate at which something will change, but also account for disrupting factors that will help to produce better projections.

Among others, his models can advise people drilling for water by predicting how groundwater is flowing in a complex geological formation. Furthermore, his work can also be applied to predict the spread of infectious diseases among people in a settlement, forecasting the number of people who will be infected each day, the number of people who will recover, and the number of people who will die. 

These are only two examples of how his work can be applied to better the lives of people.

Promoting science in the developing world

Besides promoting science in the developing world, Prof Atangana’s work also contributes to the United Nations Sustainable Development Goals – the global goals as set in 2015 that call for ending poverty, protecting the planet, and ensuring that all people enjoy prosperity and peace.

Prof Atangana says the election as fellow is a clear recognition of his outstanding contribution to science and its promotion in the developing world. “My work over the past five years has made a great impact in all fields of science, technology, and engineering.”

To be elected as TWAS fellow in mathematics, made him the second South African researcher to be elected in the field of mathematics (the first person elected was Prof Reddy Batmanathan Dayanand, who was elected in 2003). This also placed him as the sixth African mathematician to be elected as a TWAS fellow.

Very recently, he also ranked number one in the world in mathematics, number 186 in the world in all the fields, and number one in Africa in all the fields, according to the Stanford list of 2% single-year table.

He was also named among the top 1% of scientists on the global Clarivate Web of Science list. Less than 6 200 or 0,1% of the world's researchers were included on this list in 2020, with no more than 10 of the scientists hailing from South Africa. 

Prof Atangana is also editor of more than 20 top-tier journals of applied mathematics and mathematics, and for some of these journals he was the first African to be selected as editor. 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept