Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 November 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Abdon Atangana was recently elected a fellow of The World Academy of Sciences (TWAS).

Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS), was recently elected a fellow of The World Academy of Sciences (TWAS).

He also received the World Academy of Sciences Award for Mathematics (TWAS -Mohammad A. Hamdan, 2020) on 1 November 2021.

TWAS, described as the voice for science in the South, is working towards the advancement of science in developing countries and supports sustainable prosperity through research, education, policy, and diplomacy. 

Outstanding contribution to science

Prof Mohamed HA Hassan, President of TWAS, congratulated Prof Atangana on this prestigious achievement, “Your election as fellow is a clear recognition of your outstanding contribution to science and its promotion in the developing world. We will be honoured to have you among our members.”

Candidates elected as TWAS Fellows are scientists whose contributions to their respective fields of science meet internationally accepted standards of excellence, and they must have distinguished themselves in efforts to promote science in developing countries. 

Prof Atangana is known for his research to develop a new fractional operator, the Atangana-Baleanu operator, which is to model real-world problems. With this operator, he not only describes the rate at which something will change, but also account for disrupting factors that will help to produce better projections.

Among others, his models can advise people drilling for water by predicting how groundwater is flowing in a complex geological formation. Furthermore, his work can also be applied to predict the spread of infectious diseases among people in a settlement, forecasting the number of people who will be infected each day, the number of people who will recover, and the number of people who will die. 

These are only two examples of how his work can be applied to better the lives of people.

Promoting science in the developing world

Besides promoting science in the developing world, Prof Atangana’s work also contributes to the United Nations Sustainable Development Goals – the global goals as set in 2015 that call for ending poverty, protecting the planet, and ensuring that all people enjoy prosperity and peace.

Prof Atangana says the election as fellow is a clear recognition of his outstanding contribution to science and its promotion in the developing world. “My work over the past five years has made a great impact in all fields of science, technology, and engineering.”

To be elected as TWAS fellow in mathematics, made him the second South African researcher to be elected in the field of mathematics (the first person elected was Prof Reddy Batmanathan Dayanand, who was elected in 2003). This also placed him as the sixth African mathematician to be elected as a TWAS fellow.

Very recently, he also ranked number one in the world in mathematics, number 186 in the world in all the fields, and number one in Africa in all the fields, according to the Stanford list of 2% single-year table.

He was also named among the top 1% of scientists on the global Clarivate Web of Science list. Less than 6 200 or 0,1% of the world's researchers were included on this list in 2020, with no more than 10 of the scientists hailing from South Africa. 

Prof Atangana is also editor of more than 20 top-tier journals of applied mathematics and mathematics, and for some of these journals he was the first African to be selected as editor. 

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept