Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 November 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Abdon Atangana was recently elected a fellow of The World Academy of Sciences (TWAS).

Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS), was recently elected a fellow of The World Academy of Sciences (TWAS).

He also received the World Academy of Sciences Award for Mathematics (TWAS -Mohammad A. Hamdan, 2020) on 1 November 2021.

TWAS, described as the voice for science in the South, is working towards the advancement of science in developing countries and supports sustainable prosperity through research, education, policy, and diplomacy. 

Outstanding contribution to science

Prof Mohamed HA Hassan, President of TWAS, congratulated Prof Atangana on this prestigious achievement, “Your election as fellow is a clear recognition of your outstanding contribution to science and its promotion in the developing world. We will be honoured to have you among our members.”

Candidates elected as TWAS Fellows are scientists whose contributions to their respective fields of science meet internationally accepted standards of excellence, and they must have distinguished themselves in efforts to promote science in developing countries. 

Prof Atangana is known for his research to develop a new fractional operator, the Atangana-Baleanu operator, which is to model real-world problems. With this operator, he not only describes the rate at which something will change, but also account for disrupting factors that will help to produce better projections.

Among others, his models can advise people drilling for water by predicting how groundwater is flowing in a complex geological formation. Furthermore, his work can also be applied to predict the spread of infectious diseases among people in a settlement, forecasting the number of people who will be infected each day, the number of people who will recover, and the number of people who will die. 

These are only two examples of how his work can be applied to better the lives of people.

Promoting science in the developing world

Besides promoting science in the developing world, Prof Atangana’s work also contributes to the United Nations Sustainable Development Goals – the global goals as set in 2015 that call for ending poverty, protecting the planet, and ensuring that all people enjoy prosperity and peace.

Prof Atangana says the election as fellow is a clear recognition of his outstanding contribution to science and its promotion in the developing world. “My work over the past five years has made a great impact in all fields of science, technology, and engineering.”

To be elected as TWAS fellow in mathematics, made him the second South African researcher to be elected in the field of mathematics (the first person elected was Prof Reddy Batmanathan Dayanand, who was elected in 2003). This also placed him as the sixth African mathematician to be elected as a TWAS fellow.

Very recently, he also ranked number one in the world in mathematics, number 186 in the world in all the fields, and number one in Africa in all the fields, according to the Stanford list of 2% single-year table.

He was also named among the top 1% of scientists on the global Clarivate Web of Science list. Less than 6 200 or 0,1% of the world's researchers were included on this list in 2020, with no more than 10 of the scientists hailing from South Africa. 

Prof Atangana is also editor of more than 20 top-tier journals of applied mathematics and mathematics, and for some of these journals he was the first African to be selected as editor. 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept