Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 November 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Johan Meyer, Senior Professor in the Department of Mathematics and Applied Mathematics, says he is looking forward to learning from others in the field during this collaboration.

What do trees, black holes, earthquakes, and time structures have in common? 

The answer to this question is that these, in one way or the other, form the focus of some of the abstracts delivered during the Annual Congress of the South African Mathematical Society. The society has as its main objective the advancement of mathematics in South Africa. 

The Department of Mathematics and Applied Mathematics at the University of the Free State (UFS), in conjunction with the South African Mathematical Society (SAMS 2021), is hosting the 64th Annual Congress of the society this week (29 November to 1 December 2021).

Prof Johan Meyer, Senior Professor in the department, says the congress, which is being conducted online, is focusing on all aspects of mathematics research, including history and teaching.

Learning from others in the field

The congress, which aims to share the latest research results in mathematics, will be attended by staff and students from universities across South Africa as well as abroad. “Anyone from the public is, of course, welcome to attend or even share their results if they are also involved in mathematics research,” adds Prof Meyer. 

He says that he is looking forward to learning from others in the field during this collaboration. 

The congress will include discussions on more than 120 abstracts, covering category theory, algebra, topology, logic; functional analysis and operator theory; finite groups and combinatorial structures; graph theory and combinatorics; lie symmetries and nonlinear differential equations; and applied and numerical mathematics.

Array of interesting topics presented

“It is important in many areas of science and engineering to predict and to simulate rare, random events, the occurrence of which may have negative or even catastrophic consequences. Examples include internet server overflows, mechanical breakdowns, floods, and financial crashes. Rare events can also have a positive effect, triggering for example chemical reactions or driving genetic evolution via random mutations.” Prof Hugo Touchette from Stellenbosch University will be shedding some light on this interesting topic in his presentation on Predicting and simulating rare events.

Prof Jeandrew Brink, Associate Professor in the Department of Mathematics and Applied Mathematics at the UFS, is presenting a plenary session on the topic Determining the geometry of strong field space-times in spite of tacitly assuming the answer during every measurement. In South Africa, state-of-the art pulsar timing data from the MeerKAT telescope will make a considerable contribution to conducting GR orbital tests. Prof Brink comments on how pulsar timing tests differ from tests using gravitational wave detectors, as well as what we can learn from the framework already employed to perform pulsar timing measurements.

News Archive

Researcher works on finding practical solutions to plant diseases for farmers
2017-10-03

 Description: Lisa read more Tags: Plant disease, Lisa Ann Rothman, Department of Plant Sciences, 3 Minute Thesis,  

Lisa Ann Rothman, researcher in the Department of
Plant Sciences.
Photo: Supplied

 


Plant disease epidemics have wreaked havoc for many centuries. Notable examples are the devastating Great Famine in Ireland and the Witches of Salem. 

Plant diseases form, due to a reaction to suitable environments, when a susceptible host and viable disease causal organism are present. If the interactions between these three factors are monitored over space and time the outcome has the ability to form a “simplification of reality”. This is more formally known as a plant disease model. Lisa Ann Rothman, a researcher in the Department of Plant Sciences at the University of the Free State (UFS) participated in the Three Minute Thesis competition in which she presented on Using mathematical models to predict plant disease. 

Forecast models provide promise fighting plant diseases
The aim of Lisa’s study is to identify weather and other driving variables that interact with critical host growth stages and pathogens to favour disease incidence and severity, for future development of risk forecasting models. Lisa used the disease, sorghum grain mold, caused by colonisation of Fusarium graminearum, and concomitant mycotoxin production to illustrate the modelling process. 

She said: “Internationally, forecasting models for many plant diseases exist and are applied commercially for important agricultural crops. The application of these models in a South African context has been limited, but provides promise for effective disease intervention technologies.

Contributing to the betterment of society
“My BSc Agric (Plant Pathology) undergraduate degree was completed in combination with Agrometeorology, agricultural weather science. I knew that I wanted to combine my love for weather science with my primary interest, Plant Pathology. 
“My research is built on the statement of Lord Kelvin: ‘To measure is to know and if you cannot measure it, you cannot improve it’. Measuring the changes in plant disease epidemics allows for these models to be developed and ultimately provide practical solutions for our farmers. Plant disease prediction models have the potential ability to reduce the risk for famers, allowing the timing of fungicide applications to be optimised, thus protecting their yields and ultimately their livelihoods. I am continuing my studies in agriculture in the hope of contributing to the betterment of society.” 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept