Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2021 | Story Leonie Bolleurs | Photo Supplied
The group that went through to the finals of the CFA Institute Research Challenge, was from the left: Jan Hendrik Grobbelaar; Frans Benecke, Dr Ivan van der Merwe, Sacha Bourquin, and Johann Schlebusch.

Due to their knowledge and skills, charter holders are in high demand in the finance industry. A Chartered Financial Analyst (CFA) qualification sets extremely high standards of integrity and excellence, and these professionals are thus highly sought after in the investment management industry.

Dr Ivan van der Merwe, Lecturer in the Department of Economics and Finance at the University of the Free State (UFS), says the CFA Society South Africa recently (27 October) hosted the 13th annual local edition of the CFA Institute Research Challenge. “This research challenge is an annual global competition in equity research presented by the CFA Institute, which is the global representative body for CFA charter holders.”

Exceptional performance 

In a very competitive university challenge, one of the two UFS teams that entered made it through to the regional finals, along with one team each from the University of Johannesburg (UJ), the University of Stellenbosch Business School (USB), and the University of Cape Town (UCT).

Besides having the opportunity to compete with the best, the research challenge also offered students the chance to learn from leading industry experts on how to perform in-depth company analysis and to present their findings,” says Dr Van der Merwe. 

He explains that during this challenge, students had to assume the role of a sell-side research analyst and were scored by a CFA judging panel on their ability to value a specific company – Impala Platinum in this case. They had to write a concise report that covered various aspects related to the company’s business activities, structure, governance, finances, etc., after which they had to present their recommendation in terms of buying or selling the company. In addition, finalists also had to make a formal presentation via Zoom to a panel of judges from the CFA Society South Africa, where they had to justify their valuation by answering several questions posed by the judges. 

“Although the team from USB won the finals, it was still an exceptional performance for the UFS to make it to the top four teams in the country,” states Dr Van der Merwe.

Mentored by the best

Selection of the two teams of four members each representing the UFS during the 2021 challenge was based on the students’ performance during the first semester of their BCom Honours (specialisation in Financial Economics and Investment Management) in the Department of Economics and Finance.

Once selected to enter the competition, the team members were coached by an industry mentor as well as a faculty adviser. 

Dr Van der Merwe, who was the team’s adviser, says, “I was very impressed with the dedication that this group showed during the competition. It took many days and even some sleepless nights for them to produce an impressive final product within a short period.”

He believes the experience they gained during this challenge will stand them in good stead. “To successfully complete a very stressful live presentation and subsequent question session was a confidence builder for the teams. They made us proud and will inspire future Finance students at the UFS to follow in their footsteps.”

Winners of the regionals will proceed to participate in the international final, which is, according to Dr Van der Merwe, an extremely prestigious achievement, since more than 1 000 universities compete annually.  

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept