Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2021 | Story Leonie Bolleurs | Photo Supplied
The group that went through to the finals of the CFA Institute Research Challenge, was from the left: Jan Hendrik Grobbelaar; Frans Benecke, Dr Ivan van der Merwe, Sacha Bourquin, and Johann Schlebusch.

Due to their knowledge and skills, charter holders are in high demand in the finance industry. A Chartered Financial Analyst (CFA) qualification sets extremely high standards of integrity and excellence, and these professionals are thus highly sought after in the investment management industry.

Dr Ivan van der Merwe, Lecturer in the Department of Economics and Finance at the University of the Free State (UFS), says the CFA Society South Africa recently (27 October) hosted the 13th annual local edition of the CFA Institute Research Challenge. “This research challenge is an annual global competition in equity research presented by the CFA Institute, which is the global representative body for CFA charter holders.”

Exceptional performance 

In a very competitive university challenge, one of the two UFS teams that entered made it through to the regional finals, along with one team each from the University of Johannesburg (UJ), the University of Stellenbosch Business School (USB), and the University of Cape Town (UCT).

Besides having the opportunity to compete with the best, the research challenge also offered students the chance to learn from leading industry experts on how to perform in-depth company analysis and to present their findings,” says Dr Van der Merwe. 

He explains that during this challenge, students had to assume the role of a sell-side research analyst and were scored by a CFA judging panel on their ability to value a specific company – Impala Platinum in this case. They had to write a concise report that covered various aspects related to the company’s business activities, structure, governance, finances, etc., after which they had to present their recommendation in terms of buying or selling the company. In addition, finalists also had to make a formal presentation via Zoom to a panel of judges from the CFA Society South Africa, where they had to justify their valuation by answering several questions posed by the judges. 

“Although the team from USB won the finals, it was still an exceptional performance for the UFS to make it to the top four teams in the country,” states Dr Van der Merwe.

Mentored by the best

Selection of the two teams of four members each representing the UFS during the 2021 challenge was based on the students’ performance during the first semester of their BCom Honours (specialisation in Financial Economics and Investment Management) in the Department of Economics and Finance.

Once selected to enter the competition, the team members were coached by an industry mentor as well as a faculty adviser. 

Dr Van der Merwe, who was the team’s adviser, says, “I was very impressed with the dedication that this group showed during the competition. It took many days and even some sleepless nights for them to produce an impressive final product within a short period.”

He believes the experience they gained during this challenge will stand them in good stead. “To successfully complete a very stressful live presentation and subsequent question session was a confidence builder for the teams. They made us proud and will inspire future Finance students at the UFS to follow in their footsteps.”

Winners of the regionals will proceed to participate in the international final, which is, according to Dr Van der Merwe, an extremely prestigious achievement, since more than 1 000 universities compete annually.  

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept