Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2021 | Story Leonie Bolleurs | Photo Supplied
The group that went through to the finals of the CFA Institute Research Challenge, was from the left: Jan Hendrik Grobbelaar; Frans Benecke, Dr Ivan van der Merwe, Sacha Bourquin, and Johann Schlebusch.

Due to their knowledge and skills, charter holders are in high demand in the finance industry. A Chartered Financial Analyst (CFA) qualification sets extremely high standards of integrity and excellence, and these professionals are thus highly sought after in the investment management industry.

Dr Ivan van der Merwe, Lecturer in the Department of Economics and Finance at the University of the Free State (UFS), says the CFA Society South Africa recently (27 October) hosted the 13th annual local edition of the CFA Institute Research Challenge. “This research challenge is an annual global competition in equity research presented by the CFA Institute, which is the global representative body for CFA charter holders.”

Exceptional performance 

In a very competitive university challenge, one of the two UFS teams that entered made it through to the regional finals, along with one team each from the University of Johannesburg (UJ), the University of Stellenbosch Business School (USB), and the University of Cape Town (UCT).

Besides having the opportunity to compete with the best, the research challenge also offered students the chance to learn from leading industry experts on how to perform in-depth company analysis and to present their findings,” says Dr Van der Merwe. 

He explains that during this challenge, students had to assume the role of a sell-side research analyst and were scored by a CFA judging panel on their ability to value a specific company – Impala Platinum in this case. They had to write a concise report that covered various aspects related to the company’s business activities, structure, governance, finances, etc., after which they had to present their recommendation in terms of buying or selling the company. In addition, finalists also had to make a formal presentation via Zoom to a panel of judges from the CFA Society South Africa, where they had to justify their valuation by answering several questions posed by the judges. 

“Although the team from USB won the finals, it was still an exceptional performance for the UFS to make it to the top four teams in the country,” states Dr Van der Merwe.

Mentored by the best

Selection of the two teams of four members each representing the UFS during the 2021 challenge was based on the students’ performance during the first semester of their BCom Honours (specialisation in Financial Economics and Investment Management) in the Department of Economics and Finance.

Once selected to enter the competition, the team members were coached by an industry mentor as well as a faculty adviser. 

Dr Van der Merwe, who was the team’s adviser, says, “I was very impressed with the dedication that this group showed during the competition. It took many days and even some sleepless nights for them to produce an impressive final product within a short period.”

He believes the experience they gained during this challenge will stand them in good stead. “To successfully complete a very stressful live presentation and subsequent question session was a confidence builder for the teams. They made us proud and will inspire future Finance students at the UFS to follow in their footsteps.”

Winners of the regionals will proceed to participate in the international final, which is, according to Dr Van der Merwe, an extremely prestigious achievement, since more than 1 000 universities compete annually.  

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept