Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 October 2021 | Story Nonsindiso Qwabe | Photo Nonsindiso Qwabe
From the right: Dr Ralph Clark,, with fellow researchers, Dr Stephanie Payne, Dr Sandy-Lynn Steenhuisen, Dr Onalenna Gwate and Evelin Iseli, a Swiss PhD student on RangeX at the open top chambers on the Maloti-Drakensberg mountain range.

What impact has global change had on alpine vegetation in our own mountains and those around the world, and why are certain plants in mountains around the world rapidly expanding their ranges?

This is the question on which the Afromontane Research Unit (ARU) on the Qwaqwa Campus will be shining the research lens over the next three years, through Project ‘RangeX’, a multi-institutional research consortium under the Mountain Invasive Research Network (MIREN), with ETH Zurich (Switzerland) leading the research project. The project is underway in the Witsieshoek area of the Free State component of the Maloti-Drakensberg, as part of a global consortium to better understand the ecological drivers of range-expanding plant species in mountains around the world.

South Africa’s participation in the project is led by the ARU Director, Dr Ralph Clark. Other RangeX partners are Germany, Norway, Sweden, Denmark, Australia, China, Chile, and France, with research locations in the Swiss Alps, Himalayas, Andes, Australian Alps, and Scandes.

The official launch of the research site for the Maloti-Drakensberg mountains, which took place on 20 October, marked the beginning of the South African component of globally coordinated research to understand how range-expanding species may affect current alpine environments under future climatic conditions. The launch involved a site visit to the summit of the Maloti-Drakensberg. Situated at 3 100 m above sea level in the Witsieshoek area, the research seeks to determine whether typical range-expanding species might colonise the alpine zone above 2 800 m under a simulated future warmer climate. 

The South African component of RangeX is funded by the Department of Science and Innovation (DSI) through BiodivERsA, an initiative of the European Union’s Horizon 2020, which promotes research on biodiversity and ecosystem services and offers innovative opportunities for the conservation and sustainable management of biodiversity.
Speaking at the launch of the project, Dr Clark said the alpine zone of the Maloti-Drakensberg is an ecologically severe environment, resulting in only specialised species being found above 2 800 m. “However, with climate warming, it can be expected that many lower elevation plants might start to ‘climb’ the mountain and invade its upper reaches. This will have a major impact on ecology, livelihoods, endemic alpine species, and water production.”

This is the first time that such experiments will be undertaken in the alpine context of the Maloti-Drakensberg, Dr Clark explained. The ARU is using this project to promote an ambitious and long-term alpine research programme centred on the Mont-aux-Sources area, where the Free State, KwaZulu-Natal, and Lesotho meet.  

Toto Matshediso, Deputy Director: Strategic Partnerships at DSI, said the Range X project with South African funding from the DSI was aligned with the departmental priorities for investment in global change and biodiversity research and innovation. 

“The research conducted is strengthening international cooperation in terms of research collaboration with its European Union partners as a region, as well as bilateral partners involved in the project. The project is also located in an area that has been historically disadvantaged, and the DSI is proud to be part of contributors to mountain research initiatives and direct contribution to the local community. The project also places the spotlight on the rich biodiversity data of the area, and how it could contribute to the overall government priorities regarding biodiversity.”

News Archive

Short course in Applied Conservation Genetics developed at UFS
2014-08-22

 

Photo: en.wikipedia.org

During discussions with stakeholders in Kenya in 2013, a need was identified for training in conservation genetics with an African emphasis. In answer, Prof Paul Grobler from the Department of Genetics developed a short course in Applied Conservation Genetics.

Some of the phenomena studied in this field include:
• hybridisation between species such as blue wildebeest and black wildebeest,
• wildlife poaching and
• potential inbreeding in small game-farm populations.

From the onset, the course has been developed as an international venture. To this end, Dr Frank Zachos from the Natural History Museum in Vienna, Austria, committed himself to the project. Dr Jamie Roberts from the Department of Fish and Wildlife Conservation at Virginia Tech University in the USA also came on board. Both pledged their time and expertise to the course – without any financial gain.

Subsequently, our Department of Genetics presented this short course at the National Zoological Gardens (NZG) in Pretoria earlier this year. The team of presenters included Prof Grobler, Dr Zachos and Dr Roberts. They were joined by Dr Desire Dalton from the Research Division of the NZG, who added valuable practical experience to the presentations.

The course assumes a degree of prior knowledge of population and molecular genetics. A strong emphasis is placed on practical applications. The programme includes a strong component of statistics and hands-on training in the many approaches and software used in population genetics.

The group that attended the course included a contingent from the Namibian Ministry of Environment and Tourism, Dutch postgraduate students currently working at the University of Johannesburg and delegates from across South Africa.

This successful meeting followed an experimental first round of the course presented in Nairobi during 2013, attended by representatives from Kenya, Malawi, Nigeria, Mexico and Belgium.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept