Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 October 2021 | Story Nonsindiso Qwabe | Photo Nonsindiso Qwabe
From the right: Dr Ralph Clark,, with fellow researchers, Dr Stephanie Payne, Dr Sandy-Lynn Steenhuisen, Dr Onalenna Gwate and Evelin Iseli, a Swiss PhD student on RangeX at the open top chambers on the Maloti-Drakensberg mountain range.

What impact has global change had on alpine vegetation in our own mountains and those around the world, and why are certain plants in mountains around the world rapidly expanding their ranges?

This is the question on which the Afromontane Research Unit (ARU) on the Qwaqwa Campus will be shining the research lens over the next three years, through Project ‘RangeX’, a multi-institutional research consortium under the Mountain Invasive Research Network (MIREN), with ETH Zurich (Switzerland) leading the research project. The project is underway in the Witsieshoek area of the Free State component of the Maloti-Drakensberg, as part of a global consortium to better understand the ecological drivers of range-expanding plant species in mountains around the world.

South Africa’s participation in the project is led by the ARU Director, Dr Ralph Clark. Other RangeX partners are Germany, Norway, Sweden, Denmark, Australia, China, Chile, and France, with research locations in the Swiss Alps, Himalayas, Andes, Australian Alps, and Scandes.

The official launch of the research site for the Maloti-Drakensberg mountains, which took place on 20 October, marked the beginning of the South African component of globally coordinated research to understand how range-expanding species may affect current alpine environments under future climatic conditions. The launch involved a site visit to the summit of the Maloti-Drakensberg. Situated at 3 100 m above sea level in the Witsieshoek area, the research seeks to determine whether typical range-expanding species might colonise the alpine zone above 2 800 m under a simulated future warmer climate. 

The South African component of RangeX is funded by the Department of Science and Innovation (DSI) through BiodivERsA, an initiative of the European Union’s Horizon 2020, which promotes research on biodiversity and ecosystem services and offers innovative opportunities for the conservation and sustainable management of biodiversity.
Speaking at the launch of the project, Dr Clark said the alpine zone of the Maloti-Drakensberg is an ecologically severe environment, resulting in only specialised species being found above 2 800 m. “However, with climate warming, it can be expected that many lower elevation plants might start to ‘climb’ the mountain and invade its upper reaches. This will have a major impact on ecology, livelihoods, endemic alpine species, and water production.”

This is the first time that such experiments will be undertaken in the alpine context of the Maloti-Drakensberg, Dr Clark explained. The ARU is using this project to promote an ambitious and long-term alpine research programme centred on the Mont-aux-Sources area, where the Free State, KwaZulu-Natal, and Lesotho meet.  

Toto Matshediso, Deputy Director: Strategic Partnerships at DSI, said the Range X project with South African funding from the DSI was aligned with the departmental priorities for investment in global change and biodiversity research and innovation. 

“The research conducted is strengthening international cooperation in terms of research collaboration with its European Union partners as a region, as well as bilateral partners involved in the project. The project is also located in an area that has been historically disadvantaged, and the DSI is proud to be part of contributors to mountain research initiatives and direct contribution to the local community. The project also places the spotlight on the rich biodiversity data of the area, and how it could contribute to the overall government priorities regarding biodiversity.”

News Archive

Researcher wins prize for her work to reduce environmental pollution
2016-12-26

Description: Josepha Zielke Tags: Josepha Zielke 

Prof Danie Vermeulen, Dean of the Faculty of Natural
and Agricultural Sciences, and Josepha Zielke, a
PhD student at the Institute for Groundwater studies at the
University of the Free State.
Photo: Leonie Bolleurs

Josepha Zielke, a PhD student at the Institute for Groundwater Studies at the University of the Free State (UFS), received the prize for the best student presentation at the International Mine Water Association (IMWA) symposium in Leipzig, Germany, this year. Her paper was titled Fine Ash Leaching in Tailings Dams – An Impact on the Underlying Aquifers?
 
Zielke said: “It is an honour to receive this prize as a student. IMWA is a big association which allows you to establish a network with other scientists, to exchange opinions and ideas and to gain new inspiration for your own work. It was exciting and informative to hear about the research conducted around the world and to meet the researchers themselves.”
 
Born in Germany, Zielke always wanted to study overseas. During an exchange year in Grade 11, she visited South Africa. When she had to make a decision about in which country to complete her studies, South Africa was first choice as she was familiar with the people and the country.
 
Zielke joins leading institute on groundwater research in the country
She completed her BSc Hons in Geology at the Nelson Mandela Metropolitan University. After working for a year in exploration, she decided to focus her studies on water-related problems which  has been a growing issue, not only in South Africa, but in many places around the world. Zielke heard that the UFS Institute for Groundwater Studies was the leading institute on groundwater research in the country, and decided to join the university.
 
After completing her MSc research, An analysis of the geochemical weathering profile within a fine ash tailings dam, Mpumalanga, South Africa, Zielke started the research for her PhD project on groundwater pollution along a fault system in Mpumalanga.
 
Research adding value to the environment by reducing pollution
She explains the focus of her research: “Several production plants and mine waste facilities are located on or near these geological structures which could be a possible cause of ground and surface water pollution. With the aid of geophysical ground surveys (using electromagnetics and electrical resistivity tomography), aquifer and tracer tests, we are trying to determine where the pollution is coming from, how far it has been distributed and to model the potential risks.
 
“This research will add value to the environment by preventing or at least reducing pollution leaking into the environment. Industrial sites always have a negative footprint on the environment but at least we try and contain it by finding the cause of ground and surface water pollution. Thereafter we try and solve the pollution problem or at least mitigate the damage to prevent the spreading of ground and surface water pollution in the area.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept