Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 October 2021 | Story Nonsindiso Qwabe | Photo Nonsindiso Qwabe
From the right: Dr Ralph Clark,, with fellow researchers, Dr Stephanie Payne, Dr Sandy-Lynn Steenhuisen, Dr Onalenna Gwate and Evelin Iseli, a Swiss PhD student on RangeX at the open top chambers on the Maloti-Drakensberg mountain range.

What impact has global change had on alpine vegetation in our own mountains and those around the world, and why are certain plants in mountains around the world rapidly expanding their ranges?

This is the question on which the Afromontane Research Unit (ARU) on the Qwaqwa Campus will be shining the research lens over the next three years, through Project ‘RangeX’, a multi-institutional research consortium under the Mountain Invasive Research Network (MIREN), with ETH Zurich (Switzerland) leading the research project. The project is underway in the Witsieshoek area of the Free State component of the Maloti-Drakensberg, as part of a global consortium to better understand the ecological drivers of range-expanding plant species in mountains around the world.

South Africa’s participation in the project is led by the ARU Director, Dr Ralph Clark. Other RangeX partners are Germany, Norway, Sweden, Denmark, Australia, China, Chile, and France, with research locations in the Swiss Alps, Himalayas, Andes, Australian Alps, and Scandes.

The official launch of the research site for the Maloti-Drakensberg mountains, which took place on 20 October, marked the beginning of the South African component of globally coordinated research to understand how range-expanding species may affect current alpine environments under future climatic conditions. The launch involved a site visit to the summit of the Maloti-Drakensberg. Situated at 3 100 m above sea level in the Witsieshoek area, the research seeks to determine whether typical range-expanding species might colonise the alpine zone above 2 800 m under a simulated future warmer climate. 

The South African component of RangeX is funded by the Department of Science and Innovation (DSI) through BiodivERsA, an initiative of the European Union’s Horizon 2020, which promotes research on biodiversity and ecosystem services and offers innovative opportunities for the conservation and sustainable management of biodiversity.
Speaking at the launch of the project, Dr Clark said the alpine zone of the Maloti-Drakensberg is an ecologically severe environment, resulting in only specialised species being found above 2 800 m. “However, with climate warming, it can be expected that many lower elevation plants might start to ‘climb’ the mountain and invade its upper reaches. This will have a major impact on ecology, livelihoods, endemic alpine species, and water production.”

This is the first time that such experiments will be undertaken in the alpine context of the Maloti-Drakensberg, Dr Clark explained. The ARU is using this project to promote an ambitious and long-term alpine research programme centred on the Mont-aux-Sources area, where the Free State, KwaZulu-Natal, and Lesotho meet.  

Toto Matshediso, Deputy Director: Strategic Partnerships at DSI, said the Range X project with South African funding from the DSI was aligned with the departmental priorities for investment in global change and biodiversity research and innovation. 

“The research conducted is strengthening international cooperation in terms of research collaboration with its European Union partners as a region, as well as bilateral partners involved in the project. The project is also located in an area that has been historically disadvantaged, and the DSI is proud to be part of contributors to mountain research initiatives and direct contribution to the local community. The project also places the spotlight on the rich biodiversity data of the area, and how it could contribute to the overall government priorities regarding biodiversity.”

News Archive

Socially inclusive teaching provides solution to Grade 4 literacy challenges
2017-01-23

 Description: Motselisi Malebese Tags: Motselisi Malebese

Mots’elisi Malebese, postdoctoral Fellow of the Faculty
of Education at the University of the Free State (UFS) tackles
Grade 4 literacy challenges.
Photo: Rulanzen Martin

Imagine a teaching approach that inculcates richness of culture and knowledge to individual learners, thus enhancing equity, equality, social justice, freedom, hope and fairness in terms of learning opportunities for all, regardless of learners’ diversity.

This teaching strategy was introduced by Mots’elisi Malebese, postdoctoral Fellow of the Faculty of Education at the University of the Free State (UFS), whose thesis focuses on bringing together different skills, knowledge and expertise in a classroom environment in order to enhance learners’ competence in literacy.

A teaching approach to aid Grade 4 literacy competency
Titled, A Socially Inclusive Teaching Strategy to Respond to Problems of Literacy in a Grade 4 Class, Malebese’s post-doctoral research refers to an approach that improves listening, speaking, reading, writing, technical functioning and critical thinking. Malebese, who obtained her PhD qualification in June this year, says her research confirmed that, currently, Grade 4 is a bottleneck stage, at which learners from a low socio-economic background fall behind in their learning due to the transition from being taught in their home language to English as a medium of instruction.

Malebese, says: “My study, therefore, required practical intervention through participatory action research (PAR) to create conditions that foster space for empowerment.”

PAR indoctrinates a democratic way of living that is equitable, liberating and life-enhancing, by breaking away from traditional teaching methods. It involves forming coalitions with individuals with the least social, cultural and economic power.

Malebese’s thesis was encouraged by previous research that revealed that a lack of readiness for a transitional phase among learners, teachers’ inability to teach literacy efficiently, and poor parental involvement, caused many learners to experience a wide variety of learning barriers.

A co-teaching model was adopted in an effort to create a more socially inclusive classroom. This model involves one teacher providing every learner with the assistance he or she needs to succeed, while another teacher moves around the room and provides assistance to individual learners.

“Learners’ needs are served best by allowing them to demonstrate understanding in a variety of ways, because knowledge is conveyed and accomplished through collaborative work,” Malebese said.

She believes the most important benefit of this model is assuring that learners become teachers of their understanding and experiences through gained knowledge.

Roleplayers get involved using diverse expertise in their field
Teachers, parents and several NGOs played a vital role in Malebese’s study by getting involved in training, sewing and cooking clubs every weekend and during school holidays. English was the medium of teaching and learning in every activity. A lodge, close to the school, offered learners training in mountain biking and hiking. These activities helped learners become tour guides. Storyteller Gcina Mhlophe presented learners with a gift of her latest recorded storytelling CD and books. Every day after school, learners would read, and have drama lessons once a week.

AfriGrow, an organisation that works with communities, the government and the corporate sector to develop sustainable community-driven livelihoods through agricultural and nutrition programmes, provided learners with seedlings, manure and other garden inputs and training on how to start a sustainable food garden. The children were also encouraged to participate in sporting activities like soccer and netball.

“I was aware that I needed a large toolbox of instructional strategies, and had to involve other stakeholders with diverse expertise in their field,” Malebese said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept