Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2021 | Story André Damons | Photo Unsplash
Bring your blood and get a free doughnut. The Faculty of Health Sciences is conducting a blood drive this week and encourages everyone to roll up their sleeves and donate blood.

The Faculty of Health Sciences at the University of the Free State (UFS) is conducting another blood drive at their office in the Francois Retief Building this week (12 – 14 October 2021), and will be rewarding each donation with a free doughnut.

The faculty is challenging every doctor, nurse, and pharmacist, every paramedic, radiographer, and technician to roll up their sleeves and lend an arm to donate a pint of blood. If every health-care worker joins the donation and donates blood four times a year, there would never be a blood crisis.

The Faculty of Health Sciences invited the South African National Blood Services (SANBS) to the UFS this week to provide all students and staff the opportunity to donate blood at their place of work and study.

The Mental Health Awareness Campaign of the UFS Faculty of Health Sciences has included a community service component in our efforts to raise awareness of mental health issues since 2020. This is in light of increasing evidence that altruism and volunteering provide significant benefits to mental health and feelings of well-being. As all our staff and students know the vital importance of blood, we decided to focus on the SANBS as our partner to provide a quick, convenient opportunity to feel like a real hero by donating blood every three months, while enjoying a free snack.

October is Mental Health Awareness Month – we would like to invite all staff and students on campus to participate in this life-giving event.

Details for blood donation are as follows:

When: 12, 13 and 14 October

Time: 07:00-15:00

Where: Francois Retief Foyer, UFS

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept