Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2021 | Story Lunga Luthuli and Vicky Simpson | Photo Supplied
Anton Engelbrecht _ Farmovs researcher
Anton Engelbrecht, FARMOVS Bioanalysis Specialist.

“At FARMOVS, we have the opportunity to work with the world’s top pharmaceutical companies, where we form part of the evaluation of labelled and/or conjugated antigens and antibodies that are developed for accurate quantification of endogenous and pharmaceutical compounds. Alternatively, commercially available kits and reagents are also used for the same purpose if the sponsor cannot supply the customised antigens/antibodies. The developed assay methods are put through a rigorous validation assessment to confirm the selectivity, sensitivity, and robustness of the assay,” says Anton Engelbrecht, FARMOVS Bioanalysis Specialist. 

FARMOVS, affiliated to the University of the Free State and operating from the Bloemfontein Campus, is a leading clinical research organisation (CRO) with a unique advantage. As the only on-site ISO15189-accredited and GLP-certified pharmacokinetic laboratory on the African continent, with numerous successful inspections by leading international regulators, it offers the highest quality bioanalytical services in a variety of biological matrices for the development of pharmaceutical products.

Engelbrecht says: “The team of bioanalytical experts thrives on the excitement generated by new discoveries that lead to better treatment of a variety of physiological diseases.”

Advanced technology backed by 47 years of bioanalytical experience

The clinical research organisation prides itself on advanced technology, backed by 47 years of bioanalytical experience. It has developed more than 580 validated analytical methods that adhere to the International Council for Harmonisation and the US Food and Drug Administration (FDA) guidelines. FARMOVS’ analytical methods have been used in more than 3 000 pre-clinical and clinical trials, contributing to the manufacturing of pharmaceutical drugs that are now used by households across the globe.

At FARMOVS, Engelbrecht says, it is a “world filled with novel methods of analysis and subsequent technological integration that expands the horizons of clinical research forming an important part of the discovery and production of new life-saving medicines that is constantly improving the quality of life of people all over the world”.

Engelbrecht says: “New technology and innovation should be the building blocks of any laboratory, and among these are the three fastest sample production members of our Immunochemistry Laboratory team – the STARLet pipettors.”

“We chose the Microlab® STARLet apparatus by Hamilton, because of its ability to perform sample analysis in large quantities at a greater speed by means of robotic pipetting and robotic automated microplate reading, which is a semi-automated process.”

He shared his excitement about improvements in the field of immunoassay development for the purposes of pharmaceutical analysis. This involves the preparation of unique immunoanalytical reagents, analysis of new categories of compounds, methodology, and instrumentation. The most important examples in this field are the continuous development of bead-based immunoassays.

Staying competitive in the industry

Immunoassay methods, such as radioimmunoassay (RIA) and enzyme immunoassay (EIA), among others, are also used at FARMOVS to analyse macromolecules for clients. “The RIA method is used for the determination of several pharmaceutically important compounds in biological fluids. RIA requires a sample containing the antigen of interest, a complementary antibody, and a radiolabelled version of the antigen. To increase the selectivity of an assay, all samples are pre-treated to eliminate high molecular weight endogenous matrix components, including anti-drug antibodies,” explains Engelbrecht.

Although FARMOVS has adequate technology to provide market-related results, the plan is to expand the team to include a multiplex platform that is a sensitive, fully automated immunoassay platform with multiplexing and custom assay capability. “This will pave the way to use an even more sensitive method to quantify biomarkers in the fields of oncology, neurology, cardiology, inflammation, and infectious disease. We aim to remain competitive in our industry, so naturally we must recruit the brightest and most evolved to join the team,” he says.

News Archive

Mineral named after UFS professor
2017-09-29

Description: Mineral tredoux Tags: International Mineralogical Association, tredouxite, Prof Marian Tredoux, Department of Geology, Barberton 

Tredouxite (white) intergrown with bottinoite (light grey),
a complex hydrous alteration product. The large host
minerals are nickel-rich silicate (grey), maybe willemseite,
and the spinel trevorite (dark grey).


More than five thousand minerals have been certified by the International Mineralogical Association (IMA). One of these minerals, tredouxite, was recently named after an academic at the University of the Free State (UFS). 

Tredouxite was named after Prof Marian Tredoux, an associate professor in the Department of Geology, to acknowledge her close to 30 years’ commitment to figuring out the geological history of the rock in which this mineral occurs. The name was chosen by the team which identified the new mineral, consisting of Dr Federica Zaccarini and Prof. Giorgio Garuti from the University of Leoben, Austria, Prof. Luca Bindi from the University of Florence, Italy, and Prof. Duncan Miller from the UFS. 

They found the mineral in the abovementioned rock from the Barberton region in Mpumalanga, in May 2017.

In the past, a mineral was also named after Marie Curie
With the exception of a few historical (pre-1800) names, a mineral is typically named either after the area where it was first found, or after its chemical composition or physical properties, or after a person. If named after a person, it has to be someone who had nothing to do with finding the mineral.

Prof Tredoux said: “As of 19 September 2017, 5292 minerals had been certified by IMA. Of these, 81 were named after women, either singly or with a near relation. Marie Curie is named twice: sklodowskite (herself) and curite (plus husband). Most of the named women are Russian geoscientists.”

Another way to assess the rarity of such a naming is to consider that fewer than 700 minerals have been named after people. Given that there are by now seven billion people on the planet, it means that a person who is granted a mineral name becomes one in 10 million of the people alive today to be honoured in such a way. To date, over a dozen minerals had been named after South Africans, three of them after women (including tredouxite).

It contains nickel, antimony and oxygen
The chemical composition of tredouxite is NiSb2O6 (nickel antimony oxide). This makes it the nickel equivalent of the magnesium mineral bystromite (MgSb2O6), described in the 1950s from the La Fortuna antimony mine in Mexico.  

“This announcement is of great academic importance: the discovery by the Italian team of a phase with that specific chemical composition will undoubtedly help me and my co-workers to better understand the origin of the rock itself,” she said. She also expressed the hope that it may raise interest in the Department of Geology and the UFS as a whole, by highlighting that world-class research is being done at the department. 

The announcement of this new mineral was published on the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification website, the Mineralogical Magazine and the European Journal of Mineralogy.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept