Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2021 | Story Lunga Luthuli and Vicky Simpson | Photo Supplied
Anton Engelbrecht _ Farmovs researcher
Anton Engelbrecht, FARMOVS Bioanalysis Specialist.

“At FARMOVS, we have the opportunity to work with the world’s top pharmaceutical companies, where we form part of the evaluation of labelled and/or conjugated antigens and antibodies that are developed for accurate quantification of endogenous and pharmaceutical compounds. Alternatively, commercially available kits and reagents are also used for the same purpose if the sponsor cannot supply the customised antigens/antibodies. The developed assay methods are put through a rigorous validation assessment to confirm the selectivity, sensitivity, and robustness of the assay,” says Anton Engelbrecht, FARMOVS Bioanalysis Specialist. 

FARMOVS, affiliated to the University of the Free State and operating from the Bloemfontein Campus, is a leading clinical research organisation (CRO) with a unique advantage. As the only on-site ISO15189-accredited and GLP-certified pharmacokinetic laboratory on the African continent, with numerous successful inspections by leading international regulators, it offers the highest quality bioanalytical services in a variety of biological matrices for the development of pharmaceutical products.

Engelbrecht says: “The team of bioanalytical experts thrives on the excitement generated by new discoveries that lead to better treatment of a variety of physiological diseases.”

Advanced technology backed by 47 years of bioanalytical experience

The clinical research organisation prides itself on advanced technology, backed by 47 years of bioanalytical experience. It has developed more than 580 validated analytical methods that adhere to the International Council for Harmonisation and the US Food and Drug Administration (FDA) guidelines. FARMOVS’ analytical methods have been used in more than 3 000 pre-clinical and clinical trials, contributing to the manufacturing of pharmaceutical drugs that are now used by households across the globe.

At FARMOVS, Engelbrecht says, it is a “world filled with novel methods of analysis and subsequent technological integration that expands the horizons of clinical research forming an important part of the discovery and production of new life-saving medicines that is constantly improving the quality of life of people all over the world”.

Engelbrecht says: “New technology and innovation should be the building blocks of any laboratory, and among these are the three fastest sample production members of our Immunochemistry Laboratory team – the STARLet pipettors.”

“We chose the Microlab® STARLet apparatus by Hamilton, because of its ability to perform sample analysis in large quantities at a greater speed by means of robotic pipetting and robotic automated microplate reading, which is a semi-automated process.”

He shared his excitement about improvements in the field of immunoassay development for the purposes of pharmaceutical analysis. This involves the preparation of unique immunoanalytical reagents, analysis of new categories of compounds, methodology, and instrumentation. The most important examples in this field are the continuous development of bead-based immunoassays.

Staying competitive in the industry

Immunoassay methods, such as radioimmunoassay (RIA) and enzyme immunoassay (EIA), among others, are also used at FARMOVS to analyse macromolecules for clients. “The RIA method is used for the determination of several pharmaceutically important compounds in biological fluids. RIA requires a sample containing the antigen of interest, a complementary antibody, and a radiolabelled version of the antigen. To increase the selectivity of an assay, all samples are pre-treated to eliminate high molecular weight endogenous matrix components, including anti-drug antibodies,” explains Engelbrecht.

Although FARMOVS has adequate technology to provide market-related results, the plan is to expand the team to include a multiplex platform that is a sensitive, fully automated immunoassay platform with multiplexing and custom assay capability. “This will pave the way to use an even more sensitive method to quantify biomarkers in the fields of oncology, neurology, cardiology, inflammation, and infectious disease. We aim to remain competitive in our industry, so naturally we must recruit the brightest and most evolved to join the team,” he says.

News Archive

Consumer Science at the UFS awards three PhDs
2015-07-08

Dr Gloria Seiphetlheng, Dr Natasha Cronje, Dr Ismari van der Merwe and Prof Hester Steyn.
Photo: Leonie Bolleurs

For the first time in its history, the Department of Consumer Science in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) earned three doctorates at one graduation ceremony this year. This week three PhDs were awarded to Ismari van der Merwe, Natasha Cronje, and Gloria Seiphetlheng at the Winter Graduation that took place on the Bloemfontein Campus.

Electrochemically-activated water is widely used in the food and other industries, due to its excellent environment-friendly properties. However, it is not used in the textile industry yet, because too little research has been done to determine the possible positive and negative impact it may have on textiles.

With the thesis, The evaluation of catholyte treatment on the colour and tensile properties of dyed cotton, polyester and polyamide 6,6 fabrics,  Dr Cronje, a lecturer in the UFS’s Department of Consumer Science, and Dr Seiphetlheng from the Serowe College of Education in Botswana,  provided major new information with the thesis, Anolyte as an alternative bleach for cotton fabrics. This information is essential when considering the application of catholytes and anolytes in the textile industry.

Electrochemically-activated water divides water in catholytes and anolytes. The anolyte part is used as a disinfectant and bleach. It is not really suitable for domestic use, as it can cause colour loss in coloured textile products. However, it can be used in the hospitality industry where white sheets, towels, etc., are used and washed on a regular basis.

The catholyte part of the water has properties similar to washing powder. It can also be used in the textile industry as washing liquid.

According to Prof Hester Steyn, Head of the Department of Consumer Science and supervisor of all three PhD candidates, this electrochemically-activated water is also very eco-friendly. “It has a short shelf life. If the electrochemically-activated water isn’t utilised, it returns to normal water that wouldn’t harm the environment. No water is therefore lost, and no waste products are released that would contaminate the environment,” she says.

Dr Van der Merwe’s research focused on Degumming Gonometa postica cocoons using environmentally conscious methods. A lecturer in the Department of Consumer Science, she demonstrated that simple and environmentally-friendly methods can be used with great success to procure wild silk from the cocoons of the Gonometa postica worms living in the camel thorn trees found in the Northern Cape and Namibia.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept