Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2021 | Story Lunga Luthuli and Vicky Simpson | Photo Supplied
Anton Engelbrecht _ Farmovs researcher
Anton Engelbrecht, FARMOVS Bioanalysis Specialist.

“At FARMOVS, we have the opportunity to work with the world’s top pharmaceutical companies, where we form part of the evaluation of labelled and/or conjugated antigens and antibodies that are developed for accurate quantification of endogenous and pharmaceutical compounds. Alternatively, commercially available kits and reagents are also used for the same purpose if the sponsor cannot supply the customised antigens/antibodies. The developed assay methods are put through a rigorous validation assessment to confirm the selectivity, sensitivity, and robustness of the assay,” says Anton Engelbrecht, FARMOVS Bioanalysis Specialist. 

FARMOVS, affiliated to the University of the Free State and operating from the Bloemfontein Campus, is a leading clinical research organisation (CRO) with a unique advantage. As the only on-site ISO15189-accredited and GLP-certified pharmacokinetic laboratory on the African continent, with numerous successful inspections by leading international regulators, it offers the highest quality bioanalytical services in a variety of biological matrices for the development of pharmaceutical products.

Engelbrecht says: “The team of bioanalytical experts thrives on the excitement generated by new discoveries that lead to better treatment of a variety of physiological diseases.”

Advanced technology backed by 47 years of bioanalytical experience

The clinical research organisation prides itself on advanced technology, backed by 47 years of bioanalytical experience. It has developed more than 580 validated analytical methods that adhere to the International Council for Harmonisation and the US Food and Drug Administration (FDA) guidelines. FARMOVS’ analytical methods have been used in more than 3 000 pre-clinical and clinical trials, contributing to the manufacturing of pharmaceutical drugs that are now used by households across the globe.

At FARMOVS, Engelbrecht says, it is a “world filled with novel methods of analysis and subsequent technological integration that expands the horizons of clinical research forming an important part of the discovery and production of new life-saving medicines that is constantly improving the quality of life of people all over the world”.

Engelbrecht says: “New technology and innovation should be the building blocks of any laboratory, and among these are the three fastest sample production members of our Immunochemistry Laboratory team – the STARLet pipettors.”

“We chose the Microlab® STARLet apparatus by Hamilton, because of its ability to perform sample analysis in large quantities at a greater speed by means of robotic pipetting and robotic automated microplate reading, which is a semi-automated process.”

He shared his excitement about improvements in the field of immunoassay development for the purposes of pharmaceutical analysis. This involves the preparation of unique immunoanalytical reagents, analysis of new categories of compounds, methodology, and instrumentation. The most important examples in this field are the continuous development of bead-based immunoassays.

Staying competitive in the industry

Immunoassay methods, such as radioimmunoassay (RIA) and enzyme immunoassay (EIA), among others, are also used at FARMOVS to analyse macromolecules for clients. “The RIA method is used for the determination of several pharmaceutically important compounds in biological fluids. RIA requires a sample containing the antigen of interest, a complementary antibody, and a radiolabelled version of the antigen. To increase the selectivity of an assay, all samples are pre-treated to eliminate high molecular weight endogenous matrix components, including anti-drug antibodies,” explains Engelbrecht.

Although FARMOVS has adequate technology to provide market-related results, the plan is to expand the team to include a multiplex platform that is a sensitive, fully automated immunoassay platform with multiplexing and custom assay capability. “This will pave the way to use an even more sensitive method to quantify biomarkers in the fields of oncology, neurology, cardiology, inflammation, and infectious disease. We aim to remain competitive in our industry, so naturally we must recruit the brightest and most evolved to join the team,” he says.

News Archive

CTL experiments with mobile technology in teaching and learning
2016-05-23

Description: CTL experiments with mobile technology  Tags: CTL experiments with mobile technology

On the left is Nokukhanya Nkosi, Researcher and Project manager at the Centre for Teaching and Learning presenting Annah Nggoepe her brand new laptop as part of the project which assesses the impact of personal mobile devices on teaching and learning.
Photo: Supplied

Video clip

Same curriculum. Add technology. Wait and see what happens. This research project which is funded by the Department of Higher Education and Training (DHET) seeks to understand the impact of personal mobile devices (PMD) in teaching and learning.

The University of the Free State (UFS), in conjunction with the University of Cape Town, the University of the Witwatersrand, the University of Johannesburg, and Sol Plaatje University, was approached by the DHET to spearhead this national collaborative project. Investigating whether the financial investment of a PMD on either the part of a university or of students adds value to the teaching and learning experience is the overall objective of the project.

Contemporary education
The Centre for Teaching and Learning (CTL) at the UFS have been taking an active part in the project since 2015, focusing specifically on the use of personal mobile devices in teaching and learning by both staff and students.

At the student level, the study will focus specifically on not just the obstacles that first-generation students face in terms of using technology in teaching and learning, but how institutions can support these students through access to these devices.  “In 2015, the CTL conducted the Digital Identity Study of students which highlighted the view that students at the UFS deemed laptops to be the most important PMD in their studies,” said Nokukhanya Nkosi, Researcher and Project manager at the CTL.   

In April 2016, thirty students were presented with laptops funded by the project grant. For the next two years, the CTL will assess whether these laptops enable greater flexibility and effectiveness of teaching and learning, both inside and out of the classroom for these students.  

Rise of the digital classroom
Annah Ngoepe, a second-year Geography and Environmental Management student taking part in this study, commends the shift from using only textbooks in the past to incorporating technology. “The laptop has the latest applications and programmes, which are convenient for me as a student, because they help in my learning. I can also download textbooks, get summaries of the textbooks, and even other people’s views on a particular subject online.”

Tiana van der Merwe, Deputy Director at the CTL, anticipates that, after two years, the Centre would be able to make not only institutional recommendations, but also recommendations to the National Department of Higher Education.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept