Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 October 2021 | Story Elsabé Brits | Photo Supplied
Dr Monique De Milander
Dr Monique de Milander, Lecturer in Exercise and Sport Sciences at the UFS, is leading research on attention-deficit hyperactivity disorder (ADHD) and visual and motor control difficulties.

 

Research done by the University of the Free State (UFS) has shown that Grade 1 learners not only experience visual problems, but also developmental coordination disorder. Teachers and parents can help to identify this.

In the first study published in the South African Journal of Child Health (https://doi.org/10.7196/SAJCH.2021.v15i1.1705), Dr Monique de Milander, Lecturer in Exercise and Sport Sciences at the UFS, led research on attention-deficit hyperactivity disorder (ADHD) and visual and motor control difficulties.

“Visual problems are often overlooked and are seen as a hidden disability. Thus, children are labelled as ADD/ADHD, but in fact, they have learning-related visual problems. Our eyes connect the world with the brain, and we receive 80-90% of information from our eyes. Consequently, visual problems lead to poor vision, and these visual problems will interfere with children’s ability to learn in the classroom,” she explains.

During the study, ADHD symptoms were found to be significantly associated with half of the visual functioning difficulties. These skills include fixation – the ability to fixate on a stationary object with both eyes – in addition to fixating with the eyes independently. 

Ocular alignment of the right eye was indicated as a problem – the ability of the two eyes to work together in order to view an object clearly. Therefore, the eyes must move in a coordinated manner. Visual tracking was the skill that the children struggled with the most in both screening tests; thus, to follow a moving object. This was found for both eyes – the right eye on an X shape, and the left eye on a circle. 

She added that science suggests that although children at the age of five or six can perform a variety of manipulative skills such as catching, throwing, kicking, and hitting, the manipulative skills that require visual tracking or the ability to intercept moving objects, develop somewhat later (eight years) due to the sophisticated visual-motor requirements. 

Furthermore, although maturation plays a role in achieving these skills, children need opportunities to practise the skills in a variety of settings. Parents and teachers should encourage children to take part in physical activities and sports, in addition to proper instruction on how to perform the manipulative skills.

How will these visual difficulties be identified?

It is important to note that children can fixate, visually pursue objects, and reach accurate decisions about the size and shape of an object; however, some refining still has to take place. In other words, the perceptual abilities of the young child are not yet complete. Some examples of visual perception problems in a young child, as indicated by perceptual motor skills involving the eyes, are as follows: 
    
1. Using control to intercept a ball 
2. Interchanging letters and numbers
3. Poor perception of moving objects
4. Poor figure-ground perceptual abilities
5. Distance perception
6. Anticipating timing

What is the next step after identifying visual difficulties?

The first aspect to take into consideration is the age of the child since we now know that their perceptual abilities need to be refined. If the problem continues, screening tests can be done. If the child is at risk, it is recommended that the parent see an optometrist who specialises in visual problems.

How does one assist a child with ADHD in the classroom?

Five tips for teaching students with ADHD:
1. Change activities frequently to accommodate short attention span
2. Use a positive behaviour modification programme to keep student focused on task
3. Incorporate 3-5 min of conscious relaxation at the end of the physical education period
4. Give brief instructions
5. Use activities that promote cooperation among all students

In another study led by Dr De Milander and published in the South African Journal of Childhood Education (https://sajce.co.za/index.php/sajce/article/view/930), the early identification of learners with developmental coordination disorder was researched.


In children experiencing poor motor skills (fine and gross motor coordination difficulties), without evidence of a neurological disorder and which cannot be linked to a general medical difficulty such as cerebral palsy or a pervasive development disorder, the low motor skills are significant – to such an extent that it interferes with their social competence, academic performance, and physical development, leading to problems with completing daily activities, Dr De Milander explains.

The characteristics of developmental coordination disorder are:

• Experiencing problems getting dressed and tying shoelaces
• Finding it difficult to run, skip, or jump
• Experiencing problems with visual perception 
• Poor pencil grip
• Slow and hesitant movement
• Poor spatial concepts about in front, behind, next to, below, and above 
• Unable to catch or kick a ball
• Finding it difficult to work in group context

She gives the following advice: Children should be motivated and challenged to participate in simple, yet enjoyable and relaxing physical activities. The focus should be on the child's strengths and not his/her weaknesses. Allow the child to play regularly in sandboxes and with clay. Improve the child’s ball skills by catching and throwing. Motor skills must be learnt through simple mastery steps. Improve the child's movement skills and make participation in movement activities enjoyable and challenging. Concentrate on reaction skills and play in which the child can participate. In extreme cases, specialised treatment by an occupational therapist and a kinderkineticist is important.

It is important to know that children do not outgrow these disorders as previously believed; therefore, many children still experience these difficulties as adolescents. Thus, if your child is experiencing any problems, take cognisance of the problem and address it as soon as possible. Professionals such as kinderkineticists are available in private practice and at various schools to assist your child in improving a variety of deviations. The kinderkineticist can evaluate your child through a standardised test to determine the problem, and then suggest an intervention to address the specific problem, as well as to prevent secondary problems such as low self-esteem, physical inactivity, overweight and obesity, etc., which are associated with these disorders.

For help, visit the website of the South African Professional Institute for Kinderkinetics (https://kinderkinetics.co.za/) where you will be able to find a kinderkineticist in your area.

Kinderkinetics is a profession aimed at promoting and optimising the neuromotor development of young children (0-13 years) through science-based physical activity.  All programmes within this profession have a preventative, stimulating, developing, and rehabilitative nature. In summary, it has the following goals:

• Promoting functional growth and proper motor development in young children.
• Focusing on certain movement activities to promote/facilitate sport-specific skills.
• Implementing appropriate rehabilitation programmes for children with growth and/or developmental disabilities in order to maintain an active, healthy lifestyle.

News Archive

Research on locomotion of giraffes valuable for conservation of this species
2016-08-23

Description: Giraffe research 2016 Tags: Giraffe research 2016

Technology was used in filming the giraffes.
According to research, giraffes will slow
down when a drone is positioned
approximately 20 - 30 m away. When the
drone moves closer, they will revert
to galloping.
Photo: Charl Devenish


The meaning of the Arab term Giraffe Camelopardalis is ‘someone who walks fast’. It is precisely this locomotion of their longnecks that encouraged researchers, Dr Francois Deacon and Dr Chris Basu, to study the animals more closely.

Despite the fact that giraffes are such well-known animals, very little research has been done on the manner in which these graceful animals locomote from one place to the next. There are only two known ways of locomotion: the slower lateral walking and the faster galloping. Most animals use these ways of moving forward. It is unknown why giraffes avoid intermediate-speed trotting.

Research of great value to the industry

Research on the manner in which giraffes locomote from one place to the next will assist the industry in understanding aspects such as their anatomy and function, as well as the energy they utilise in locomoting from one place to another. Information on the latter could help researchers understand where giraffes fit into the ecosystem. This data is of great value for large-scale conservation efforts.

Universities working together to collect data

Dr Basu, a veterinarian at the Royal Veterinary College in the UK, has studied the animals at a zoo park in the United Kingdom. He visited the University of the Free State (UFS) in order to expand his fieldwork on the locomotion of giraffes. This study was done in cooperation with Dr Deacon from the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research in South Africa and other African countries.

The fieldwork for the research, which was done in the Woodland Hills Wildlife Estate and the Willem Pretorius Nature Reserve, preceded research on the movement and the forces involved in the locomotion of giraffes. Due to the confined fenced area in the zoo park, it was practically impossible to study the animals at speed. “The study of actions ‘faster than walking’ is crucial for gathering data on, inter alia, the frequency, length, and time associated with each step.


Technology such as drones offers unique
opportunities to study animals like giraffes.



Technology used to ensure accuracyTechnology such as drones offers unique opportunities to study animals like giraffes. Apart from the fact that it is possible to get high-quality video material of giraffes – moving at speed – it is also a very controlled device that ensures the accuracy of data.

It is the first time ever that a study has been done on the locomotion of giraffes with this level of detail.
Research on the study will be published in the Journal of Experimental Biology.

The project was approved by the UFS ethics committee.

 

 

 

Previous research articles:

9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept