Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 October 2021 | Story André Damons | Photo Charl Devenish
Dr Champion Nyoni and Dr Annali Fichardt, together with Prof Yvonne Botma (not on the picture), from the School of Nursing at the University of the Free State (UFS) came in second for their research paper on this innovative educational strategy at the recent Faculty of Health Sciences’ Faculty Research Forum.

When South Africa went into hard lockdown due to the outbreak of the COVID-19 pandemic, the School of Nursing at the University of the Free State (UFS) adopted the conventional boot camp as an innovative way to continue learning and teaching clinical skills for its students.

School of Nursing leadership adopting an innovative educational strategy

The COVID-19 pandemic, specifically the hard lockdown of 2020, challenged the leadership of the School of Nursing to adopt  innovative educational strategies to continue learning and teaching, especially for undergraduate nursing students. Adapting theory classes to the online space appeared easier due to the various enabling modalities in the university such as Blackboard, but the same could not be said about learning clinical skills. It is near impossible to learn clinical skills at home. The School of Nursing had to devise ways to facilitate learning of clinical skills in campus during the pandemic. Underpinned by the theory of deliberate practice, they used the boot camp as an innovative educational strategy to continue the learning and teaching of clinical skills. 

Dr Champion Nyoni, Dr Annali Fichardt and Prof Yvonne Botma, who did research on this innovative educational strategy, came in second place at the recent Faculty of Health Sciences’ Faculty Research Forum. They also won the Kerneels Nel medal for best educational research paper in 2020. 

Manuscript already accepted

The manuscript about their research has already been accepted by The African Journal of Health Professions Education and will be published next year. 

“Deliberate practice is understood as a type of purposeful and systematic learning of skills requiring focused attention and is conducted to improve performance. Boot camps are synonymous with conventional training camps, such as used in the military, where specific skills are learnt, and the School of Nursing adopted the practice for this particular situation,” wrote the researchers in the manuscript. 

According to them, the boot camps had the dual aim of developing foundational clinical skills for undergraduate nursing students, including sessions missed during the higher levels of lockdown, and preparing them for the ‘new’ workplace environment. 

Educational institutions were compelled to adapt their education strategies during the pandemic and the innovation of the use of boot camps as a strategy for learning and teaching clinical skills is an example of what the School of Nursing applied immediately after the hard lockdown. 

How the boot camps worked 

Each student year group was allocated a week at the simulation laboratory. Each year group was then split into smaller groups to attend their boot camp on specific days of the week. The module outcomes determined the nature and number of clinical skills to be taught per camp. 

All the students received a video recording of the clinical skills and associated learning material prior to the boot camp to prepare for the session. On the day of the camp, the group was further split into smaller manageable groups, which were stationed in smaller venues of the simulation laboratory with a preceptor. 

Equipment and materials related to the clinical skills for the day were made available in all the venues. A central venue hosted the leading session facilitator, who provided foundational information about the clinical skill before a demonstration while being live-streamed to the other smaller venues. Students in smaller venues watched the leading facilitator via live streaming after which they had opportunities for clarification from their preceptor. All the students in the small groups then demonstrated the taught skills to the preceptor who immediately provided feedback. 
This intervention commenced after the hard lockdown and continued for the whole of the year 2020.

Outcomes of the strategy 

The boot camps appeared to have influenced the learning and teaching of clinical skills positively, but the strategy is an emergency solution only in response to COVID-19 and is not regarded as suitable for long-term educational purposes. Students’ clinical outcomes appear to have improved compared to previous years and they appreciated the efforts taken by their educators in facilitating the learning of clinical skills and re-integrating them into the clinical environment. 
“We always encourage our students to be innovative in their own practice, – the boot camps were an exceptional demonstration of practising what we preach,” says Dr Nyoni.

The infrastructure, the educators, and the leadership of the School of Nursing appeared to be enablers for the effective influence of this strategy. The boot camps were located at the state-of-the-art simulation facilities at the school that have multiple venues and facilities for live streaming. Teamwork among the educators in each year group drove the process through reflecting on their own practice. 

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept