Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 October 2021 | Story André Damons | Photo Charl Devenish
Dr Champion Nyoni and Dr Annali Fichardt, together with Prof Yvonne Botma (not on the picture), from the School of Nursing at the University of the Free State (UFS) came in second for their research paper on this innovative educational strategy at the recent Faculty of Health Sciences’ Faculty Research Forum.

When South Africa went into hard lockdown due to the outbreak of the COVID-19 pandemic, the School of Nursing at the University of the Free State (UFS) adopted the conventional boot camp as an innovative way to continue learning and teaching clinical skills for its students.

School of Nursing leadership adopting an innovative educational strategy

The COVID-19 pandemic, specifically the hard lockdown of 2020, challenged the leadership of the School of Nursing to adopt  innovative educational strategies to continue learning and teaching, especially for undergraduate nursing students. Adapting theory classes to the online space appeared easier due to the various enabling modalities in the university such as Blackboard, but the same could not be said about learning clinical skills. It is near impossible to learn clinical skills at home. The School of Nursing had to devise ways to facilitate learning of clinical skills in campus during the pandemic. Underpinned by the theory of deliberate practice, they used the boot camp as an innovative educational strategy to continue the learning and teaching of clinical skills. 

Dr Champion Nyoni, Dr Annali Fichardt and Prof Yvonne Botma, who did research on this innovative educational strategy, came in second place at the recent Faculty of Health Sciences’ Faculty Research Forum. They also won the Kerneels Nel medal for best educational research paper in 2020. 

Manuscript already accepted

The manuscript about their research has already been accepted by The African Journal of Health Professions Education and will be published next year. 

“Deliberate practice is understood as a type of purposeful and systematic learning of skills requiring focused attention and is conducted to improve performance. Boot camps are synonymous with conventional training camps, such as used in the military, where specific skills are learnt, and the School of Nursing adopted the practice for this particular situation,” wrote the researchers in the manuscript. 

According to them, the boot camps had the dual aim of developing foundational clinical skills for undergraduate nursing students, including sessions missed during the higher levels of lockdown, and preparing them for the ‘new’ workplace environment. 

Educational institutions were compelled to adapt their education strategies during the pandemic and the innovation of the use of boot camps as a strategy for learning and teaching clinical skills is an example of what the School of Nursing applied immediately after the hard lockdown. 

How the boot camps worked 

Each student year group was allocated a week at the simulation laboratory. Each year group was then split into smaller groups to attend their boot camp on specific days of the week. The module outcomes determined the nature and number of clinical skills to be taught per camp. 

All the students received a video recording of the clinical skills and associated learning material prior to the boot camp to prepare for the session. On the day of the camp, the group was further split into smaller manageable groups, which were stationed in smaller venues of the simulation laboratory with a preceptor. 

Equipment and materials related to the clinical skills for the day were made available in all the venues. A central venue hosted the leading session facilitator, who provided foundational information about the clinical skill before a demonstration while being live-streamed to the other smaller venues. Students in smaller venues watched the leading facilitator via live streaming after which they had opportunities for clarification from their preceptor. All the students in the small groups then demonstrated the taught skills to the preceptor who immediately provided feedback. 
This intervention commenced after the hard lockdown and continued for the whole of the year 2020.

Outcomes of the strategy 

The boot camps appeared to have influenced the learning and teaching of clinical skills positively, but the strategy is an emergency solution only in response to COVID-19 and is not regarded as suitable for long-term educational purposes. Students’ clinical outcomes appear to have improved compared to previous years and they appreciated the efforts taken by their educators in facilitating the learning of clinical skills and re-integrating them into the clinical environment. 
“We always encourage our students to be innovative in their own practice, – the boot camps were an exceptional demonstration of practising what we preach,” says Dr Nyoni.

The infrastructure, the educators, and the leadership of the School of Nursing appeared to be enablers for the effective influence of this strategy. The boot camps were located at the state-of-the-art simulation facilities at the school that have multiple venues and facilities for live streaming. Teamwork among the educators in each year group drove the process through reflecting on their own practice. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept