Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 October 2021 | Story André Damons | Photo Charl Devenish
Dr Champion Nyoni and Dr Annali Fichardt, together with Prof Yvonne Botma (not on the picture), from the School of Nursing at the University of the Free State (UFS) came in second for their research paper on this innovative educational strategy at the recent Faculty of Health Sciences’ Faculty Research Forum.

When South Africa went into hard lockdown due to the outbreak of the COVID-19 pandemic, the School of Nursing at the University of the Free State (UFS) adopted the conventional boot camp as an innovative way to continue learning and teaching clinical skills for its students.

School of Nursing leadership adopting an innovative educational strategy

The COVID-19 pandemic, specifically the hard lockdown of 2020, challenged the leadership of the School of Nursing to adopt  innovative educational strategies to continue learning and teaching, especially for undergraduate nursing students. Adapting theory classes to the online space appeared easier due to the various enabling modalities in the university such as Blackboard, but the same could not be said about learning clinical skills. It is near impossible to learn clinical skills at home. The School of Nursing had to devise ways to facilitate learning of clinical skills in campus during the pandemic. Underpinned by the theory of deliberate practice, they used the boot camp as an innovative educational strategy to continue the learning and teaching of clinical skills. 

Dr Champion Nyoni, Dr Annali Fichardt and Prof Yvonne Botma, who did research on this innovative educational strategy, came in second place at the recent Faculty of Health Sciences’ Faculty Research Forum. They also won the Kerneels Nel medal for best educational research paper in 2020. 

Manuscript already accepted

The manuscript about their research has already been accepted by The African Journal of Health Professions Education and will be published next year. 

“Deliberate practice is understood as a type of purposeful and systematic learning of skills requiring focused attention and is conducted to improve performance. Boot camps are synonymous with conventional training camps, such as used in the military, where specific skills are learnt, and the School of Nursing adopted the practice for this particular situation,” wrote the researchers in the manuscript. 

According to them, the boot camps had the dual aim of developing foundational clinical skills for undergraduate nursing students, including sessions missed during the higher levels of lockdown, and preparing them for the ‘new’ workplace environment. 

Educational institutions were compelled to adapt their education strategies during the pandemic and the innovation of the use of boot camps as a strategy for learning and teaching clinical skills is an example of what the School of Nursing applied immediately after the hard lockdown. 

How the boot camps worked 

Each student year group was allocated a week at the simulation laboratory. Each year group was then split into smaller groups to attend their boot camp on specific days of the week. The module outcomes determined the nature and number of clinical skills to be taught per camp. 

All the students received a video recording of the clinical skills and associated learning material prior to the boot camp to prepare for the session. On the day of the camp, the group was further split into smaller manageable groups, which were stationed in smaller venues of the simulation laboratory with a preceptor. 

Equipment and materials related to the clinical skills for the day were made available in all the venues. A central venue hosted the leading session facilitator, who provided foundational information about the clinical skill before a demonstration while being live-streamed to the other smaller venues. Students in smaller venues watched the leading facilitator via live streaming after which they had opportunities for clarification from their preceptor. All the students in the small groups then demonstrated the taught skills to the preceptor who immediately provided feedback. 
This intervention commenced after the hard lockdown and continued for the whole of the year 2020.

Outcomes of the strategy 

The boot camps appeared to have influenced the learning and teaching of clinical skills positively, but the strategy is an emergency solution only in response to COVID-19 and is not regarded as suitable for long-term educational purposes. Students’ clinical outcomes appear to have improved compared to previous years and they appreciated the efforts taken by their educators in facilitating the learning of clinical skills and re-integrating them into the clinical environment. 
“We always encourage our students to be innovative in their own practice, – the boot camps were an exceptional demonstration of practising what we preach,” says Dr Nyoni.

The infrastructure, the educators, and the leadership of the School of Nursing appeared to be enablers for the effective influence of this strategy. The boot camps were located at the state-of-the-art simulation facilities at the school that have multiple venues and facilities for live streaming. Teamwork among the educators in each year group drove the process through reflecting on their own practice. 

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept