Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 October 2021 | Story André Damons | Photo Charl Devenish
Dr Champion Nyoni and Dr Annali Fichardt, together with Prof Yvonne Botma (not on the picture), from the School of Nursing at the University of the Free State (UFS) came in second for their research paper on this innovative educational strategy at the recent Faculty of Health Sciences’ Faculty Research Forum.

When South Africa went into hard lockdown due to the outbreak of the COVID-19 pandemic, the School of Nursing at the University of the Free State (UFS) adopted the conventional boot camp as an innovative way to continue learning and teaching clinical skills for its students.

School of Nursing leadership adopting an innovative educational strategy

The COVID-19 pandemic, specifically the hard lockdown of 2020, challenged the leadership of the School of Nursing to adopt  innovative educational strategies to continue learning and teaching, especially for undergraduate nursing students. Adapting theory classes to the online space appeared easier due to the various enabling modalities in the university such as Blackboard, but the same could not be said about learning clinical skills. It is near impossible to learn clinical skills at home. The School of Nursing had to devise ways to facilitate learning of clinical skills in campus during the pandemic. Underpinned by the theory of deliberate practice, they used the boot camp as an innovative educational strategy to continue the learning and teaching of clinical skills. 

Dr Champion Nyoni, Dr Annali Fichardt and Prof Yvonne Botma, who did research on this innovative educational strategy, came in second place at the recent Faculty of Health Sciences’ Faculty Research Forum. They also won the Kerneels Nel medal for best educational research paper in 2020. 

Manuscript already accepted

The manuscript about their research has already been accepted by The African Journal of Health Professions Education and will be published next year. 

“Deliberate practice is understood as a type of purposeful and systematic learning of skills requiring focused attention and is conducted to improve performance. Boot camps are synonymous with conventional training camps, such as used in the military, where specific skills are learnt, and the School of Nursing adopted the practice for this particular situation,” wrote the researchers in the manuscript. 

According to them, the boot camps had the dual aim of developing foundational clinical skills for undergraduate nursing students, including sessions missed during the higher levels of lockdown, and preparing them for the ‘new’ workplace environment. 

Educational institutions were compelled to adapt their education strategies during the pandemic and the innovation of the use of boot camps as a strategy for learning and teaching clinical skills is an example of what the School of Nursing applied immediately after the hard lockdown. 

How the boot camps worked 

Each student year group was allocated a week at the simulation laboratory. Each year group was then split into smaller groups to attend their boot camp on specific days of the week. The module outcomes determined the nature and number of clinical skills to be taught per camp. 

All the students received a video recording of the clinical skills and associated learning material prior to the boot camp to prepare for the session. On the day of the camp, the group was further split into smaller manageable groups, which were stationed in smaller venues of the simulation laboratory with a preceptor. 

Equipment and materials related to the clinical skills for the day were made available in all the venues. A central venue hosted the leading session facilitator, who provided foundational information about the clinical skill before a demonstration while being live-streamed to the other smaller venues. Students in smaller venues watched the leading facilitator via live streaming after which they had opportunities for clarification from their preceptor. All the students in the small groups then demonstrated the taught skills to the preceptor who immediately provided feedback. 
This intervention commenced after the hard lockdown and continued for the whole of the year 2020.

Outcomes of the strategy 

The boot camps appeared to have influenced the learning and teaching of clinical skills positively, but the strategy is an emergency solution only in response to COVID-19 and is not regarded as suitable for long-term educational purposes. Students’ clinical outcomes appear to have improved compared to previous years and they appreciated the efforts taken by their educators in facilitating the learning of clinical skills and re-integrating them into the clinical environment. 
“We always encourage our students to be innovative in their own practice, – the boot camps were an exceptional demonstration of practising what we preach,” says Dr Nyoni.

The infrastructure, the educators, and the leadership of the School of Nursing appeared to be enablers for the effective influence of this strategy. The boot camps were located at the state-of-the-art simulation facilities at the school that have multiple venues and facilities for live streaming. Teamwork among the educators in each year group drove the process through reflecting on their own practice. 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept