Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 October 2021 | Story Dr Nitha Ramnath | Photo Rhona Klopper
Donating masks to Rekopane Primary School, were from the left: Alfi Moolman (UFS Directorate: Community Engagement), Sonja Venter-Botes (Bloemshelter), Tina Moleko (Rankwe Primary School), and Michelle Engelbrecht (UFS Centre for Health Systems Research and Development).


The Centre for Health Systems Research and Development (CHSR&D) at the University of the Free State (UFS) recently donated 500 masks to Rekopane Primary School in Botshabelo. This initiative was part of its pledge to donate 100 cloth masks to a previously disadvantaged primary school for every 1 000 of the first 5 000 completed questionnaires that formed part of a study survey examining people’s understanding of information about COVID-19 vaccines. The results of the study will be shared with stakeholders who are responsible for providing information about COVID-19 vaccinations.

It is known that a large number of people globally and in South Africa prefer not to be vaccinated. “There are many reasons for this, and we would like to find out where people are getting information about the COVID-19 vaccination, and whether they are able to understand this information, so that they can make an informed choice about getting vaccinated. We did this by asking people about their own health and COVID-19, where they have heard about the vaccine, if they understood this information, and whether they have had/would have the vaccine or not, as well as the reasons for this,” said Prof Michelle Engelbrecht, Director of CHSR&D. 

While following guidelines such as wearing masks, sanitising hands, and social distancing are important to prevent the spread of COVID-19, a large percentage of the population will need to be vaccinated if we want to control the pandemic in the long term and prevent hospitalisation and severe illness. 

All persons in South Africa aged 18 and older were invited to complete an online survey regarding their perceptions of COVID-19 vaccines. The survey, which was available in the seven most spoken languages in the country, was advertised on social media platforms such as Facebook and Twitter, and on the Moya app.  The survey was open from 1 to 31 September 2021, and the CHSR&D received 10 554 completed questionnaires.  No data was required to complete the survey.

The Department of Basic Education partners decided on the school that would benefit, and the study provided an opportunity to support Bloemshelter, a UFS flagship programme. Alfi Moolman of the Directorate: Community Engagement said that “NGOs are really struggling to make ends meet, and we are delighted that Bloemshelter could provide the masks as one of their income-generating projects.  So many lives are touched for the good. The university is indeed a caring organisation.”


News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept