Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 October 2021 | Story Prof Francis Petersen

The University of the Free State (UFS) calls on all higher education institutions, business, the private and public sector, and the South African community to confirm their commitment towards climate change and to contribute to climate change interventions.

“The UFS is committed to contributing meaningfully through research, innovation, policy advice, activism, and the operational management of the university to a fairer, cleaner, and healthier world, and urges world leaders to make bold decisions on how to reduce greenhouse gas emissions at the upcoming Climate Change Conference of the Parties (COP26) meeting in Glasgow,” says Prof Francis Petersen, Rector and Vice-Chancellor.

The UFS supports the United Nations’ (UN) Sustainable Development Goals (SDGs), and in particular Goal 13, which calls for urgent action to combat climate change and its impact and is committed to underpinning it in the institution’s strategy and operations.

According to Prof Petersen, the university is developing a response to positively impact society and is using the SDGs as basis for this response. “This will incorporate our operations in terms of green and sustainable campuses, as well as the Academic Project in terms of quality research, engaged scholarship, and strategic partnerships with government, communities, and different sectors of the economy. A response to the SDGs is a significant step towards our commitment to play a role in climate change,” says Prof Petersen.

News Archive

Well-established root system important for sustainable production in semi-arid grasslands
2015-02-24

Plot layout where production and root studies were done
Photo: Supplied

The importance of a well-established root system for sustainable production in the semi-arid grasslands cannot be over-emphasised.

A study of Prof Hennie Snyman from the Department of Animal and Wildlife and Grassland Sciences at the University of the Free State is of the few studies in which soil-water instead of rainfall has been used to estimate above- and below-ground production of semi-arid grasslands. “In the past, plant ecological studies have concentrated largely on above-ground parts of the grassland ecosystem with less emphasis on root growth. This study is, therefore, one of the few done on root dynamics in drier areas,” said Prof Snyman.

The longevity of grass seeds in the soil seed bank is another aspect that is being investigated at present. This information could provide guidelines in grassland restoration.

“Understanding changes in the hydrological characteristics of grassland ecosystems with degradation is essential when making grassland management decisions in arid and semi-arid areas to ensure sustainable animal production. The impact of grassland degradation on productivity, root production, root/shoot ratios, and water-use efficiency has been quantified for the semi-arid grasslands over the last 35 years. Because of the great impact of sustainable management guidelines on land users, this study will be continuing for many years,” said Prof Snyman.

Water-use efficiency (WUE) is defined as the quantity of above- and/or below-ground plant produced over a given period of time per unit of water evapotranspired. Sampling is done from grassland artificially maintained in three different grassland conditions: good, moderate, and poor.

As much as 86, 89 and 94% of the roots for grasslands in good, moderate and poor conditions respectively occur at a depth of less than 300 mm. Root mass is strongly seasonal with the most active growth taking place during March and April. Root mass appears to be greater than above-ground production for these semi-arid areas, with an increase in roots in relation to above-ground production with grassland degradation. The mean monthly root/shoot ratios for grasslands in good, moderate, and poor conditions are 1.16, 1.11, and 1.37 respectively. Grassland degradation lowered above- and below-ground plant production significantly as well as water-use efficiency. The mean WUE (root production included) was 4.79, 3.54 and 2.47 kg ha -1 mm -1 for grasslands in good, moderate, and poor conditions respectively.

These water-use efficiency observations are among the few that also include root production in their calculations.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept