Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 October 2021 | Story Prof Francis Petersen

The University of the Free State (UFS) calls on all higher education institutions, business, the private and public sector, and the South African community to confirm their commitment towards climate change and to contribute to climate change interventions.

“The UFS is committed to contributing meaningfully through research, innovation, policy advice, activism, and the operational management of the university to a fairer, cleaner, and healthier world, and urges world leaders to make bold decisions on how to reduce greenhouse gas emissions at the upcoming Climate Change Conference of the Parties (COP26) meeting in Glasgow,” says Prof Francis Petersen, Rector and Vice-Chancellor.

The UFS supports the United Nations’ (UN) Sustainable Development Goals (SDGs), and in particular Goal 13, which calls for urgent action to combat climate change and its impact and is committed to underpinning it in the institution’s strategy and operations.

According to Prof Petersen, the university is developing a response to positively impact society and is using the SDGs as basis for this response. “This will incorporate our operations in terms of green and sustainable campuses, as well as the Academic Project in terms of quality research, engaged scholarship, and strategic partnerships with government, communities, and different sectors of the economy. A response to the SDGs is a significant step towards our commitment to play a role in climate change,” says Prof Petersen.

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept