Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 September 2021 | Story Leonie Bolleurs | Photo Supplied
Dr Frikkie Maré is serving as one of the directors of the non-profit organisation, the Agri Relief Foundation (ARF).

The agricultural sector is used to facing events of abnormal impact, including floods, droughts, veld fires, and disease outbreaks. Even if it is possible to prepare against any of these risks by taking proper measures, for instance by having a farm emergency plan in place or by securing property properly, there are times when it is not possible or practical for the modern-day South African farmer to proactively manage all the risks they are facing.

It is in times like these that the newly established body, the Agri Relief Foundation (ARF), provides an invaluable service to the agricultural sector. 

Dr Frikkie Maré, Senior Lecturer in the Department of Agricultural Economics at the University of the Free State (UFS), is one of the directors of this non-profit organisation, which focuses on assisting agricultural producers in need. 

This initiative is the brainchild of a number of businesses in the agricultural sector.

He says although there are many institutions in South Africa assisting farmers, most of the current initiatives are geared towards large-scale disasters, such as severe droughts, floods, unpreventable pests and diseases, and veld fires that affect many producers.  

Benefiting the wider society

According to Dr Maré, the ARF will focus on helping individual agricultural producers who are in need; both financially and otherwise.  This may include elements such as the loss of grazing due to brown locust, assistance after a farm attack or murder to ensure the day-to-day running of the farm, and localised natural disasters such as floods, hail, severe cold, or fire.

The group of directors plays a key role in screening the applications for assistance and deciding, based on merit and the availability of resources, who they can assist.

Besides the direct benefit to the farmer, this initiative also adds value to the wider society. “When the sustainability of an agricultural producer is under threat, it also threatens the livelihoods of his/her workers and their families, the rural economy of the nearest town where they purchase production inputs and general groceries, as well as society at large, as less food and/or fibre will be produced.  The assistance of the ARF will therefore ripple out to a much larger level than only the agricultural producer,” explains Dr Maré. 

A learning experience

There is also a benefit for the university. In the classroom, Dr Maré will be able to share any knowledge he is gaining in this process with his students. “Agricultural Economics is fundamentally about ensuring the long-term sustainability of agricultural production through concepts, including but not limited to, production economics, natural resource economics, agricultural management, and marketing.  My involvement in the ARF will provide examples of what can go wrong in terms of primary production that threatens the sustainability of the enterprise and what can be done to assist,” he says. 

Any business or individual can contribute to this noble cause. Financial contributions as well as physical products such as transport, fuel, animal feed, and legal services are welcome. 

Dr Maré says they have already received contributions from companies such as Zoetis (animal health), which sponsor a part of their profit from certain products to the foundation on a continuous basis. Lavendula (animal feed) also sponsored the proceeds of a farmers’ information day.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept